Guia para los Committers

Resumen

Este documento proporciona informacion para la comunidad de committers de FreeBSD. Todos los
committers nuevos deben leer este documento antes de empezar, y se recomienda
encarecidamente a los committers actuales que lo revisen de vez en cuando.

Casi todos los desarrolladores de FreeBSD tienen derecho de acceso a uno o mds repositorios. Sin
embargo, algunos desarrolladores no lo tienen, y cierta informacion aqui expuesta también les
afecta. (Por ejemplo, algunas personas solo tienen derecho a trabajar con la base de datos de
reporte de problemas.) Por favor lea Problemas Especificos para Desarrolladores que No Son
Committers para mds informacion.

Este documento también puede ser de interés para los miembros de la comunidad de FreeBSD que
quieran saber mas sobre el funcionamiento del proyecto.

Tabla de contenidos

1. Detalles administrativos 2
2. Claves OpenPGP de FreeBSD 3
3. Kerberos y contrasefia web LDAP para el cluster de FreeBSD 4
4. Tipos de Commit Bits S
5. Introduccion a Git 7
6. Historico del Control de Versiones 40
7. Configuracion, Convenciones y Tradiciones 41
8. Revision previa al commit 46
9. Mensajes de Commit 47
10. Licencia preferida para los nuevos archivos 55
11. Seguimiento de las licencias concedidas al proyecto FreeBSD 56
12. Etiquetas SPDX en el arbol 57
13. Relaciones con los desarrolladores 57
14. Si tienes dudas ... 58
15. Bugzilla 39
16. Phabricator 39
17. Quien es Quien 60
18. Guia de inicio rapido de SSH 61
19. Disponibilidad de Coverity® para los Committers de FreeBSD 62
20. La gran lista de reglas de los Committers de FreeBSD 62
21. Soporte para multiples arquitecturas 71
22. Preguntas frecuentes sobre ports especificos 75

23. Problemas Especificos para Desarrolladores que No Son Committers

24. Informacion sobre Google Analytics

25. Preguntas miscelaneas

26. Beneficios y Ventajas para los committers de FreeBSD

82
82
83
83

1. Detalles administrativos

Meétodos de inicio de sesion
Host Shell Principal
Maquinas de Referencia

SMTP Host

src/ Repositorio Git
doc/ Repositorio Git
ports/ Repositorio Git

Listas de Correo Internas

Informes mensuales del Core Team

Informes mensuales del Ports Management Team

Notablemente Ramas de Git de src/:

ssh(1), s6lo protocolo 2

freefall.FreeBSD.org

ref*.FreeBSD.org, universe*.freeBSD.org
(consulta también Maquinas del Proyecto
FreeBSD)

smtp.FreeBSD.org:587 (consulta también
Configuracion de acceso SMTP).

ssh://qgit@gitrepo.FreeBSD.org/src.qgit
ssh://git@gitrepo.FreeBSD.org/doc.git
ssh://qgit@gitrepo.FreeBSD.org/ports.git

developers (técnicamente llamada all-
developers) doc-developers, doc-committers,
ports-developers, ports-committers, src-
developers, src-committers. (Cada repositorio
del proyecto tiene su propia lista de correo
terminada en -developers y -committers. Se
pueden encontrar archivos para estas listas en
los ficheros /local/mail/repository-name-
developers-archive y /local/mail/repository-
name-committers-archive en
freefall.FreeBSD.org.)

/home/core/public/reports en el cluster
FreeBSD.org.

/home/portmgr/public/monthly-reports en el
cluster FreeBSD.org.

stable/n (n-STABLE), main (-CURRENT)

Se requiere ssh(1) para conectarse a los servidores del proyecto. Para mds informacion, lea Guia de

inicio rapido de SSH.
Enlaces de interés:

» Paginas Internas del Proyecto FreeBSD

» Servidores del Proyecto FreeBSD

https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://www.FreeBSD.org/internal/machines/
https://www.FreeBSD.org/internal/machines/
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://www.FreeBSD.org/internal/
https://www.FreeBSD.org/internal/machines/

* Grupos Administrativos del Proyecto FreeBSD

2. Claves OpenPGP de FreeBSD

Claves criptograficas que siguen al estandar OpenPGP (Pretty Good Privacy) son utilizadas por el
Proyecto FreeBSD para autentificar a los colaboradores. Mensajes que contengan informacién
importante como claves SSH publicas pueden ser firmadas con una clave OpenPGP para demostrar
que provienen realmente del colaborador. Véase PGP & GPG: Email for the Practical Paranoid by
Michael Lucas y http://en.wikipedia.org/wiki/Pretty_Good_Privacy para mas informacion.

2.1. Creando una clave

Se pueden utilizar claves ya existentes, pero primero deberian ser comprobadas primero con
documentation/tools/checkkey.sh. En este caso, comprueba que la clave tiene un identificador de
usuario de FreeBSD.

Para aquellos que todavia no tengan una clave OpenPGP, o necesiten una nueva para reunir los
requerimientos de seguridad de FreeBSD, se mostrard a continuacién como generarla.

1. Instala security/gnupg. Inserta las siguientes lineas en ~/.gnupg/gpg.conf para establecer
valores aceptables por defecto:

fixed-list-mode

keyid-format @xlong

personal-digest-preferences SHA512 SHA384 SHA256 SHA224
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CASTS
BZIP2 ZLIB ZIP Uncompressed

verify-options show-uid-validity

list-options show-uid-validity

sig-notation issuer-fpr@notations.openpgp.fifthhorseman.net=%g
cert-digest-algo SHA512

2. Genera una clave:

% gpg --full-gen-key

gpg (GnuPG) 2.1.8; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Warning: using insecure memory!
Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? 1

https://www.FreeBSD.org/administration/
https://nostarch.com/releases/pgp_release.pdf
https://nostarch.com/releases/pgp_release.pdf
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048 @
Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years
Key is valid for? (0) 3y @
Key expires at Wed Nov 4 17:20:20 2015 MST
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.

Real name: Chucky Daemon ®

Email address: notreal@example.com
Comment:

You selected this USER-ID:

"Chucky Daemon <notreal@example.com>"

Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

@ Claves de 2048 bits con una expiracion de tres afios proporcionan una proteccion adecuada
actualmente (202-10).

@ Tres afos de vida util para una clave hacen que sea lo suficientemente corta como para
hacer que quede obsoleta por el avance de la potencia de los ordenadores, pero lo
suficientemente larga como para reducir los problemas de administracion de claves.

® Utiliza tu nombre real aqui, preferiblemente coincidente con el nombre de tu documento
de identificacion oficial para ayudar a otros a verificar tu identidad. En la seccion Comment
se puede introducir texto que ayude a otros a identificarte.
Después de introducir la direccion de correo electrénico, se solicita una contrasefia. Los
métodos para crear una contrasefia segura son bastante polémicos. En lugar de sugerir una
unica forma, aqui hay algunos enlaces a sitios que describen varios métodos:
https://world.std.com/~reinhold/diceware.html, https://www.iusmentis.com/security/
passphrasefaq/, https://xkcd.com/936/, https://en.wikipedia.org/wiki/Passphrase.

Protege la clave privada y la contrasefia. Si la clave privada o la contrasefia fueran comprometidas
o reveladas, notificalo de forma inmediata a accounts@FreeBSD.org y revoca la clave.

Los pasos para enviar la nueva clave se muestran en Pasos para los Nuevos Committers.

3. Kerberos y contrasena web LDAP para el
cluster de FreeBSD

El cluster de FreeBSD requiere una contrasefia de Kerberos para acceder a ciertos servicios. La

https://world.std.com/~reinhold/diceware.html
https://www.iusmentis.com/security/passphrasefaq/
https://www.iusmentis.com/security/passphrasefaq/
https://xkcd.com/936/
https://en.wikipedia.org/wiki/Passphrase
mailto:accounts@FreeBSD.org

contrasefia de Kerberos también sirve como contrasefia web LDAP, ya que LDAP hace de proxy a
Kerberos en el cluster. Algunos de los servicios que requieren esto incluyen:

* Bugzilla

* Jenkins

Para crear una nueva cuenta de Kerberos en el cluster de FreeBSD, o para restablecer una
contrasefia de Kerberos para una cuenta existente utilizando un generador de contrasefias
aleatorias:

% ssh kpasswd.freebsd.org

o Esto debe hacerse desde una maquina fuera del cluster de FreeBSD.org.

Una contrasefia de Kerberos también puede ser establecida manualmente iniciando sesion en
freefall.FreeBSD.orgy ejecutando:

% kpasswd

A menos que los servicios autentificados con Kerberos del cluster de FreeBSD.org

o hayan sido usados previamente, se mostrara Client unknown. Este error significa
que el método de ssh kpasswd.freebsd.org mostrado previamente tendra que ser
usado para inicializar la cuenta de Kerberos.

4. Tipos de Commit Bits

El repositorio de FreeBSD tiene una serie de componentes que, cuando se combinan, integran el
codigo fuente del sistema base del sistema operativo, la documentacion, la infraestructura de ports
de las aplicaciones de terceros y varias utilidades mantenidas. Cuando se asignan los commit bits,
se especifican las areas del arbol donde se tiene permiso. Generalmente, las dreas asociadas con un
commit bit reflejan quién autorizé la asignacién del commit bit. Se pueden agregar mas areas de
autoridad posteriormente: cuando esto ocurre, el committer debe seguir los procedimientos
normales de asignacion de commit bit para esa area del arbol, buscar la aprobacion de la entidad
apropiada y posiblemente obtener un mentor para esa drea durante un cierto periodo de tiempo.

Tipos de Commiters Responsable Componentes del Arbol

src core@ src/

doc doceng@ doc/, ports/, src/ documentacion
ports portmgr@ ports/

Los commit bits asignados antes de que se desarrollara la idea de areas de autoridad, pueden ser
apropiados para su uso en muchas partes del arbol. Sin embargo, el sentido comun dicta que un
committer que no haya trabajado previamente en esa area del arbol busque una revision antes de
realizar el commit, busque la aprobacion del equipo responsable, y/o trabaje con un mentor. Dado

https://bugs.freebsd.org/bugzilla
https://ci.freebsd.org

que las reglas con respecto al mantenimiento del cddigo difieren segun el area del arbol, esto
beneficiara tanto a quién trabaja en un drea del drbol con la que no esta muy familiarizado como a
quienes trabajan en el arbol.

Se anima a los committers a buscar la revision de su trabajo como parte del proceso natural del
desarrollo, independientemente del drea del arbol en la cual se esté realizando el trabajo.

4.1. Politica para la actividad de los Committers en
otros arboles

* Todos los committers pueden modificar src/share/misc/committers-*dot,
src/usr.bin/calendar/calendars/calendar.freebsd, y ports/astro/xearth/files.

* Los committers de documentacion pueden realizar commits en la documentacion de src, como
las péaginas del manual, READMEs, bases de datos de fortune, archivos de calendario y
correcciones de comentarios sin la aprobacion de un src committer, teniendo en cuenta las
normas requeridas para la correcta realizacion de los commuits.

* Cualquier committer puede realizar cambios en cualquier otro arbol con un "Approved by" de
un committer que no esté tutelado y dispone del commit bit apropiado. Los committers con
mentor pueden proporcionar un comentario "Reviewed by" pero no un "Approved by".

* Los committers pueden adquirir commit bit adicionales mediante el proceso habitual de
encontrar a un mentor que lo proponga a core, doceng o portmgr, segun sea el caso. Una vez
aprobados, se afiadiran al "acceso" y se producird el periodo normal de tutoria, que implicara
una continuacion de "Approved by" durante algun tiempo.

4.1.1. Aprobacion Implicita (Blanket) de Documentacion

Algunos arreglos tienen "blanket approval" por parte de Grupo de Ingenieria de Documentacion
<doceng@FreeBSD.org>, permitiendo a cualquier committer arreglar ese tipo de problemas en
cualquier parte del arbol de documentacion. Estos arreglos no necesitan aprobacion o revision por
parte de un committer de documentacion si el autor no tiene un commit bit de documentacion.

El blanket approval aplica en estos tipos de arreglos:

* Faltas de ortografia

* Arreglos triviales

Puntuacion, URLs, fechas, rutas y nombres de fichero con informacion desactualizada o
incorrecta, y otros errores comunes que puedan confundir a los lectores.

A lo largo de los afos, se han concedido algunas aprobaciones implicitas en el arbol de
documentacion. Esta lista muestra los casos mas comunes:

* Cambios en documentation/content/en/books/porters-handbook/versions/_index.adoc
__FreeBSD_version Values (Porter’s Handbook), utilizado principalmente por committers de src.

e Cambios en doc/shared/contrib-additional.adoc

mailto:doceng@FreeBSD.org
https://docs.freebsd.org/en/books/porters-handbook/versions/

Mantenimiento de Colaboradores Adicionales de FreeBSD.

» Todo Pasos para los Nuevos Committers, relacionado con documentacion

» Avisos de seguridad; Notas de Errata; Releases;

Utilizado por Grupo Responsables de Seguridad <security-officer@FreeBSD.org> y Grupo de
Ingenieria de Releases <re@FreeBSD.org>.

* Cambios en website/content/en/donations/donors.adoc
Utilizado por el Responsable de Donaciones <donations@FreeBSD.org>.

Antes de un commit, es necesario comprobar la compilacion; consulta las secciones de 'Overview'y
'The FreeBSD Documentation Build Process' de Introduccion al Proyecto de Documentacion de
FreeBSD para Nuevos Voluntarios para mas detalles.

5. Introduccion a Git

5.1. Git basico

Cuando uno busca "Introduccién a Git" aparecen unos cuantos buenos las introducciones de Daniel
Miessler A git primer y de Willie Willus Git - Quick Primer son ambas buenas. El libro de Git
también es completo, pero mucho mads largo https://git-scm.com/book/en/v2. También hay un sitio
web https://dangitgit.com/ para errores comunes y problemas de Git, en caso de que necesites
ayuda para arreglar algo. Por ultimo una introduccion dirigida a cientificos computacionales ha
demostrado ser util para algunos a la hora de explicar como Git ve el mundo.

Este documento asumira que lo has leido y tratara de no insistir en lo basico (aunque lo cubrira
brevemente).

5.2. Mini Introduccion a Git

Esta introduccion tiene un d&mbito menos ambicioso que la antigua Introduccién a Subversion, pero
deberia cubrir lo basico.

5.2.1. Ambito

Si quieres descargar FreeBSD, compilarlo desde las fuentes, y en general mantenerte actualizado de
ese modo, esta introduccion es para ti. Cubre como obtener las fuentes, actualizarlas, hacer
biseccion y trata brevemente como lidiar con unos pocos cambios locales. Cubre lo basico y trata de
dar buenos consejos para un tratamiento mdas en profundidad para cuando el lector encuentre lo
bésico insuficiente. Otras secciones de esta guia cubren temas mdas avanzados relacionados con
como contribuir al proyecto.

El objetivo de esta seccion es resaltar aquellas partes de Git que se necesitan para seguir la pista a
las fuentes. Asumen un conocimiento basico de Git. Hay muchas introducciones de Git en la web,
pero el Git Book proporciona una de las mejores.

https://docs.freebsd.org/en/articles/contributors/#contrib-additional
#commit-steps
mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org
mailto:donations@FreeBSD.org
https://docs.freebsd.org/en/books/fdp-primer/
https://docs.freebsd.org/en/books/fdp-primer/
https://danielmiessler.com/study/git/
https://gist.github.com/williewillus/068e9a8543de3a7ef80adb2938657b6b
https://git-scm.com/book/en/v2
https://dangitgit.com/
https://eagain.net/articles/git-for-computer-scientists/
https://git-scm.com/book/en/v2

5.2.2. Primeros Pasos Para Desarrolladores

Esta seccion describe el acceso de lectura-escritura para que los committers hagan push de los
commits de los desarrolladores o colaboradores.

5.2.2.1. Uso diario

o In the examples below, replace ${repo} with the name of the desired FreeBSD
repository: doc, ports, or src.

* Clona el repositorio:

% git clone -o freebsd --config remote.freebsd.fetch="+refs/notes/*:refs/notes/*'
https://git.freebsd.org/${repo}.qgit

Después deberias tener tu remote apuntando a los mirrors oficiales:

% git remote -v
freebsd https://git.freebsd.org/${repo}.git (fetch)
freebsd https://git.freebsd.org/${repo}.git (push)

* Configura los datos del committer de FreeBSD:

El commit hook en repo.freebsd.org comprueba que el campo "Commit" coincide con la
informacion del committer en FreeBSD.org. La forma mds facil de conseguir la configuracion
sugerida es ejecutar el script /usr/local/bin/gen-gitconfig.sh en freefall:

% gen-gitconfig.sh
[...]

it config user.name (your name in gecos)

it config user.email (your login)@FreeBSD.org

)
°

(Ve Ve]

[
%

 Establece la URL para hacer push:

% git remote set-url --push freebsd git@gitrepo.freebsd.org:${repo}.git

Después deberias tener URLs separadas para fetch y push que es la configuracion mas eficiente:

% git remote -v
freebsd https://git.freebsd.org/${repo}.qgit (fetch)
freebsd git@gitrepo.freebsd.org:${repo}.git (push)

De nuevo, date cuenta de que gitrepo.freebsd.org ha sido convertido a su forma canodnica
repo.freebsd.org.

 Instala el hook para la plantilla del mensaje de commit:

% fetch https://cqit.freebsd.org/src/plain/tools/tools/git/hooks/prepare-commit-msg
-0 .git/hooks
% chmod 755 .git/hooks/prepare-commit-msg

5.2.2.2. rama "admin"

Los ficheros access y metors se almacenan en una rama huérfana, internal/admin, en cada
repositorio.

El siguiente ejemplo muestra como obtener la rama internal/admin en una rama local admin:

9
)

git config --add remote.freebsd.fetch "+refs/internal/*:refs/internal/*'
% git fetch
% git checkout -b admin internal/admin

De forma alternativa, puedes afiadir un arbol de trabajo (worktree) para la rama admin:
git worktree add -b admin ../${repo}-admin internal/admin

Para visualizar la rama internal/admin en la web: https://cqgit.freebsd.org/${repo}/1log/?
h=internal/admin

For pushing, specify the full refspec:

git push freebsd HEAD:refs/internal/admin

5.2.3. Mantenerse Actualizado Con el Arbol src de FreeBSD

Primer paso: clonar un arbol. Esto descarga el arbol completo. Hay dos formas de hacerlo. La
mayoria de la gente quiere hacer un clonado profundo del repositorio. Sin embargo, hay momentos
en los que quieres hacer un clonado superficial.

5.2.3.1. Nombres de las Ramas

FreeBSD-CURRENT utiliza la rama main.
main es la rama por defecto.
Para FreeBSD-STABLE, los nombres de las ramas incluyen stable/12 y stable/13.

Para FreeBSD-RELEASE, los nombres de las ramas de ingenieria de versiones incluyen releng/12.4
y releng/13.2.

https://www.freebsd.org/releng/ muestra:

https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://www.freebsd.org/releng/

* ramas mainy stable/:- abiertas

* ramas releng/::-, cada una de las cuales es congelada cuando se etiqueta una version.
Ejemplos:

* etiqueta release/13.1.0 en la rama releng/13.1

* etiqueta release/13.2.0 en la rama releng/13.2.

5.2.3.2. Repositorios

Por favor consulta Detalles Administrativos para la ultima informacion sobre dénde obtener las
fuentes de FreeBSD. El $URL que se muestra abajo se puede obtener en esa pagina.

Nota: El proyecto no utiliza submaédulos ya que no encajan en nuestro flujo de trabajo y modelo de
desarrollo. Como seguimos la pista a los cambios en las aplicaciones de terceros se discute en otro
sitio y en general no es de interés para un usuario casual.

5.2.3.3. Clonado Profundo

Un clonado profundo se trae el arbol entero, asi como las ramas y toda la historia. Es lo mas facil de
hacer. También te permite usar la caracteristica de los arboles de trabajo para tener todas tus
ramas activas en directorios separados pero con una sola copia del repositorio.

% git clone -o freebsd $URL -b branch [<directory>]

—creara un clonado profundo. branch deberia ser una de las ramas listadas en la seccion anterior.
Si no se proporciona branch se usara la rama por defecto (main). Si no se proporciona <directory> se
usara como nombre del nuevo directorio el que coincida con el nombre del repositorio (doc, ports o
SIre).

Querrds un clonado profundo si estds interesado en el historico, planeas hacer cambios locales, o
planeas trabajar en mas de una rama. Es la forma mas facil también de mantenerse actualizado. Si
estds interesado en el historico pero vas a trabajar solo con una rama y andas corto de espacio,
también puedes usar --single-branch para descargar la rama (aunque algunos commits de merge no
referenciardn la rama desde la que se mergearon lo que podria ser importante para algunos
usuarios interesados en versiones detalladas del historico).

5.2.3.4. Clonado Superficial

Un clonado superficial s6lo copia el codigo mas actual, pero nada o poco del historico. Esto puede
ser util cuando necesitas construir una revision especifica de FreeBSD o cuando simplemente estas
empezando y planeas seguir la pista al arbol de forma més completa. También puedes usarlo para
limitar el histérico a un numero determinado de revisiones. Sin embargo, lee mas abajo para una
limitacion importante a esta aproximacion.

% git clone -o freebsd -b branch --depth 1 $URL [dir]

10

https://cgit.freebsd.org/src/tag/?h=release/13.1.0
https://cgit.freebsd.org/src/log/?h=releng/13.1
https://cgit.freebsd.org/src/tag/?h=release/13.2.0
https://cgit.freebsd.org/src/log/?h=releng/13.2

Esto clona el repositorio, pero sélo la version mas reciente. El resto del histérico no se descarga. Si
cambiaras de opinion mads tarde, puedes hacer git fetch --unshallow para obtener el historico
antiguo.

Cuando haces un clonado superficial, pierdes el contador de commits en la salida
de uname. Esto puede hacer mds dificil determinar si tu sistema necesita ser
actualizado cuando se notifica un aviso de seguridad.

5.2.3.5. Compilando

Una vez que has descargado, la compilacion se hace como se describe en el manual, por ejemplo.:

o

cd src

make buildworld
make buildkernel
make installkernel
make installworld

o o of

o

de forma que no lo cubriremos en profundidad.

Si quieres construir un kernel personalizado, la seccion de configuracion del kernel del FreeBSD
Handbook recomienda crear un fichero MYKERNEL bajo sys/${ARCH}/conf con tus cambios contra
GENERIC. Para que Git ignore MYKERNEL, se puede afiadir a .git/info/exclude.

5.2.3.6. Actualizacion

Para actualizar ambos tipos de arbol utilizan los mismos comandos. Esto se trae todas las revisiones
desde tu ultima actualizacidn.

% git pull --ff-only

actualizara el arbol. En Git, un merge tipo 'fast forward' es aquel que solo necesita establecer el
puntero a una rama nueva y no necesita recrear los commits. Haciendo siempre un merge/pull de
tipo 'fast forward', te asegurarads de que tienes una copia exacta del arbol de FreeBSD. Esto sera
importante si quieres mantener parches locales.

Lee mads abajo para saber como gestionar cambios locales. Lo mas sencillo es utilizar --autostash
con el comando git pull, pero hay disponibles opciones mas sofisticadas.

5.2.4. Seleccionando una Version Especifica

En Git, git checkout se trae tanto ramas como versiones especificas. Las versiones de Git son hashes
largos en lugar de ntimeros secuenciales.

Cuando te traes una version especifica, simplemente especifica en la linea de comando el hash que
quieres (el comando git log te ayudara a decidir cudl es el hash que quieres):

11

https://docs.freebsd.org/es/books/handbook/#kernelconfig

% git checkout 08b8197a74
y ya te lo has traido. Se te saludara con un mensaje como el siguiente:

Note: checking out '08b8197a742396964d2924391bf9fdfeb788865d" .

You are in a 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 08b8197a742a hook gpiokeys.4 to the build

donde la ultima linea es generada a partir del hash que te has traido y la primera linea del mensaje
de commit de esa revision. El hash se puede abreviar a la longitud unica mas corta que exista. Git es
inconsistente acerca de cuantos digitos muestra.

5.2.5. Biseccion

A veces, algo va mal. La ultima version funciond pero la ultima a la que te has actualizado no. Un
desarrollador podria pedirte que bisecciones el problema para localizar qué commit causo la
regresion.

Git hacer facil biseccionar cambios con un potente comando git bisect. Aqui hay una breve
introduccion a como usarlo. Para mas informacion, puedes ver https://www.metaltoad.com/blog/
beginners-guide-git-bisect-process-elimination o https://git-scm.com/docs/git-bisect para mads
detalles. La pagina de manual de git-bisect es buena describiendo lo que puede salir mal, qué hacer
cuando las versiones no compilan, cudndo quieres usar otros términos diferentes de 'bueno' y
'malo’, etc, nada de lo cual se cubrira aqui.

git bisect start --first-parent comenzara el proceso de biseccion. Después necesitaras decirle un
rango para que trabaje. git bisect good XXXXXX le dird la revision que funciona y git bisect bad
XXXXX le dird la revision mala. La revision mala casi siempre serd HEAD (un tag especial para lo que
te has traido). La version buena sera la ultima que te trajiste. El argumento --first-parent es
necesario para que llamadas siguientes a git bisect no intenten traerse una rama externa que
carece de las fuentes completas de FreeBSD.

Si quieres saber la ultima version que te trajiste, deberias usar git reflog:

O 5ef@bd68b515 (HEAD -> main, freebsd/main, freebsd/HEAD) HEAD@{0}: pull
- --ff-only: Fast-forward
a8163e165c5b (upstream/main) HEAD@{1}: checkout: moving from
b6fb97efb682994159b21fedefb3fcfc@e5b9eeb to main

12

https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://git-scm.com/docs/git-bisect

me muestra moviendo el directorio de trabajo a la rama main (a816...) y después
actualizando desde el origen (a 5ef0...). En esta caso, malo seria HEAD (o 5rf0bd68)
y bueno seria a8163e165. Como puedes ver en la salida, HEAD@{1} también
funciona, pero no es a prueba de fallos si has hecho otras cosas en tu arbol después
de actualizar, pero antes de que descubrieras que tenias que hacer biseccion.

Primero establece la version 'good’, luego la mala (aunque el orden no importa). Cuando
establezcas la version mala, te dard algunas estadisticas sobre el proceso:

% git bisect start --first-parent

% git bisect good a8163e165c5b

% git bisect bad HEAD

Bisecting: 1722 revisions left to test after this (roughly 11 steps)
[c427b3158fd8225fbafc@9e7e6T62326f9e4de7e] Fixup r361997 by balancing parens. Duh.

Después deberias compilar/instalar esa version. Si es buena, teclearias git bisect good si no git
bisect bad. Si la version no compila, teclea git bisect skip. Recibirds un mensaje similar al de
arriba para cada paso. Una vez que hayas terminado, informa al desarrollador de la version mala
(o arregla el fallo ti mismo y envia un parche). git bisect reset terminard el proceso y te
devolverd a donde empezaste (normalmente a la punta de main). De nuevo, el manual de git-bisect
(enlazado arriba) es un buen recurso para cuando las cosas van mal o en casos inusuales.

5.2.6. Firmando los commits, tags, y pushes, con GnuPG

Git sabe cdmo firmar commits, tags y pushes. Cuando firmas un commit o tag de Git, puedes probar
que el cédigo que enviaste vino de ti y que no fue alterado mientras lo transferias. También puedes
probar que tu enviaste el cddigo y no otra persona.

Se puede encontrar documentacion mas en profundidad sobre cdmo firmar commits y tags en el
capitulo Git Tools - Signing Your Work del libro de Git.

El motivo tras la firma de pushes se puede encontrar en el commit que introdujo esta caracteristica.

La mejor forma es simplemente decirle a Git que siempre quieres firmar commits, tags y pushes.
Puedes hacerlo estableciendo unas pocas variables de configuracion:

o

git config --add user.signingKey LONG-KEY-ID
git config --add commit.gpgSign true

git config --add tag.gpgSign true

git config --add push.gpgSign if-asked

of of

o

o Para evitar posibles colisiones, asegurate de darle a Git una id de clave que sea
largo. Puedes obtenerlo con: gpg --list-secret-keys --keyid-format LONG.

13

https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://github.com/git/git/commit/a85b377d0419a9dfaca8af2320cc33b051cbed04

Para utilizar subclaves especificas y no hacer que GnuPG resuelva la subclave a
(;) una clave primaria, afiade ! a la clave. Por ejemplo, para encriptar la subclave
DEADBEEF, usa DEADBEEF!.

5.2.6.1. Verificando firmas

Las firmas de los commits se pueden verificar ejecutando git verify-commit <commit hash>, o git
log --show-signature.

Las firmas de los tags se pueden verificar con git verity-tag <tag name>, 0 git tag -v <tag name>.

5.2.7. Consideraciones para Ports

El 4rbol de ports funciona de la misma forma. Los nombres de las ramas son diferentes y los
repositorios estan en diferentes lugares.

La interfaz web cgit del repositorio para ser usada desde navegadores web estd en
https://cgit.FreeBSD.org/ports/. El repositorio Git de produccidon estd en https://git.FreeBSD.org/
ports.git y en ssh://anongit@git.FreeBSD.org/ports.git (0 anongit@git.FreeBSD.org:ports.git).

También hay un mirror en GitHub, lee Mirrors externos para un resumen. La rama mas actual es
'main'. Las ramas trimestrales se llaman yyyyQn para el afio 'yyyy'y el trimestre 'n'.

5.2.7.1. Formatos de mensaje de commits

El repositorio de ports tiene disponible en .hooks/prepare-commit-message un hook para ayudarte
a escribir tus mensajes de commit. Se puede activar ejecutando git config --add core.hooksPath
.hooks.

La razon principal es que un mensaje de commit se deberia formatear de la siguiente forma:

cateqory/port: Summary.

Descripcion de por qué se han hecho los cambios.

PR: 12345
La primera linea es el titulo del commit, contiene por qué el port ha cambiado, y
un resumen del commit. Deberia ser de no mds de 50 caracteres.

Se deberia utilizar una linea en blanco para separarlo del resto del mensaje de

o commit.

El resto del mensaje se deberia limitar a no mas de 72 caracteres por linea.

Si hay campos de metadatos se deberia utilizar otra linea en blanco, de forma que
se distingan facilmente del mensaje de commit.

14

https://cgit.FreeBSD.org/ports/
https://git.FreeBSD.org/ports.git
https://git.FreeBSD.org/ports.git
mailto:anongit@git.FreeBSD.org
https://docs.freebsd.org/es/books/handbook//mirrors#mirrors
https://cgit.freebsd.org/ports/tree/.hooks/prepare-commit-msg

5.2.8. Gestionando Cambios Locales
This section addresses tracking local changes. If you have no local changes you can skip this section.

Un punto que es importante para todos ellos: todos los cambios son locales hasta que se hace push.
A diferencia de Subversion, Git utiliza un modelo distribuido. Para la mayoria de los usuarios y los
casos, hay poca diferencia. Sin embargo, si tienes cambios locales, puedes usar la misma
herramienta para gestionarlos que la que usara para traerte los cambios de FreeBSD. Todos los
cambios para los que no has hecho push son locales y se pueden cambiar facilmente (git rebase,
discutido mas abajo hace esto).

5.2.8.1. Manteniendo cambios locales

La forma mas sencilla de mantener cambios locales (especialmente si son triviales) es usar git
stash. En su forma mds simple, utilizas git stash para grabar los cambios (lo que los empuja a la
pila del stash). La mayoria de la gente utiliza esto para guardar cambios antes de actualizar un
arbol como se describe arriba. Después utilizan git stash apply para reaplicarlos al arbol. El stash
es una pila de cambios que se puede examinar con git stash list. La pagina del manual de git-
stash (https://git-scm.com/docs/git-stash) tiene todos los detalles.

Este método va bhien cuando tienes pequefios cambios en el arbol. Cuando tienes algo no trivial,
probablemente sea mejor mantener una rama local y rebasarla. Guardar los cambios (stashing)
también es algo integrado en el comando git pull: simplemente afiade --autostash en la linea de
comando.

5.2.8.2. Manteniendo una rama local

Es mucho mas facil mantener una rama local con Git que con Subversion. En Subversion necesitas
mergear el commit, y resolver los conflictos. Esto es manejable, pero puede llevar a un historico
complicado que es dificil de mover al origen (upstream) si fuera necesario, o dificil de replicar si lo
necesitas. Git también permite mergear, con los mismos problemas. Esa es una forma de gestionar
la rama, pero es la menos flexible.

Ademas de hacer merging, Git soporta el concepto de rebase que evita estos problemas. E1 comando
git rebase rehace todos los commits de una rama en un lugar nuevo de la rama padre. Cubriremos
los casos mas comunes que surgen al usarlo.

5.2.8.2.1. Crear una rama

Digamos que quieres hacer un cambio en el comando Is de FreeBSD para que nunca use colores.
Hay muchas razones para hacer esto, pero en este ejemplo usaremos esto como punto de partida. E1
comando 1ls de FreeBSD cambia de cudndo en cudndo y necesitards lidiar con esos cambios.
Afortunadamente, con Git rebase esto es algo normalmente automatico.

o

cd src

git checkout main

git checkout -b no-color-1s

cd bin/1s

vi ls.c # hack the changes in
git diff # check the changes

o o° of o°

o

15

https://git-scm.com/docs/git-stash

diff --git a/bin/1s/1s.c b/bin/1s/1s.c
index 7378268867ef..cfc3f4342531 100644
--- a/bin/1s/1s.c
+++ b/bin/1s/l1s.c
@@ -66,6 +66,7 @@ __FBSDID("$FreeBSD$");
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
+#undef COLORLS
#ifdef COLORLS
#include <termcap.h>
#include <signal.h>
% # these look good, make the commit...
% git commit 1s.c

El commit te llevara a un editor para que describas lo que has hecho. Una vez hecho esto, tienes tu
propia rama local en el repo de Git. Compila e instala como harias normalmente, siguiendo las
instrucciones del manual. Git es diferente a otros sistemas de control de versiones en cuanto que
tienes que decirle explicitamente qué ficheros quieres incluir en el commit. He optado por hacerlo
en la linea de comando pero también puedes hacerlo con git add que se cubre en muchos de los
tutoriales mas detallados.

5.2.8.2.2. Momento de actualizar

Cuando es momento de sacar una nueva version, es casi lo mismo que sin ramas. Actualizarias
como se ha hecho arriba, pero hay un comando extra antes de que actualices y uno después. Lo que
sigue asume que empiezas con un arbol sin modificar. Es importante empezar las operaciones de
rebase con un arbol limpio (es un requisito en Git).

o

git checkout main
git pull --ff-only
git rebase -i main no-color-1s

o

o

Eso arrancard un editor que lista todos los commits. Para este ejemplo, no lo cambies. Esto es
tipicamente lo que haces mientras actualizas la base (aunque también puedes utilizar el comando
rebase de Git para filtrar los commits que quieres en la rama).

Una vez que has terminado con lo de arriba, tienes que avanzar los commits de 1s.c desde la version
vieja de FreeBSD a la nueva.

A veces hay conflictos al fusionar. Estd bien. No te asustes. En lugar de eso, tratalos como cualquier
otro conflicto de merge. Para hacerlo sencillo, simplemente describiré un problema comun que
puede aparecer. Se puede encontrar un enlace a un tratamiento mdas completo al final de esta
seccion.

Digamos que los includes cambian en el proyecto origen de una forma radical para terminfo asi
como también un cambio de nombre para la opcién. Cuando te actualizaste, podrias haber visto
algo como esto:

16

Auto-merging bin/1s/l1s.c

CONFLICT (content): Merge conflict in bin/1s/1s.c

error: could not apply 646e0f9cdall... no color 1s

Resolve all conflicts manually, mark them as resolved with

"git add/rm <conflicted_files>", then run "git rebase --continue".

You can instead skip this commit: run "git rebase --skip".

To abort and get back to the state before "git rebase", run "git rebase --abort".
Could not apply 646e@f9cdall... no color 1s

que da miedo. Si abres un editor, verds que es una resolucién de conflicto tipica de 3 vias con la que
podrias estar familiarizado de otros sistemas de control de codigo (el resto de Is.c se ha omitido):

<<<<<<< HEAD
#ifdef COLORLS_NEW
#include <terminfo.h>

#undef COLORLS

#ifdef COLORLS

#include <termcap.h>

>>>>>>> 646e0f9cdall... no color 1s

E1l codigo nuevo estd primero, y tu cddigo segundo.

E1 arreglo correcto aqui es afiadir simplemente #undef COLORLS_NEW ante de @ifdef vy
después borrar los cambios antiquos:

[source,shell]

#undef COLORLS_NEW #ifdef COLORLS_NEW #include <terminfo.h>

guarda el fichero.
E1l rebase fue interrumpido, asi que tienes que completarlo:
[source,shell]

% git add 1s.c % git rebase --continue

que le dice a Git que 1s.c ha sido arreglado y que puede continuar con el rebase. Puesto que hubo un
conflicto, se te dirigira al editor para actualizar el mensaje de commit si es necesario. Si el mensaje
sigue siendo preciso, simplemente sal del editor.

Si te atascas durante el rebase, no te asustes. git rebase --abort te llevara de nuevo a un estado
limpio. Sin embargo, es importante empezar con un arbol sin modificar. Una nota: el git reflog
mencionado arriba es util aqui ya que tendrd una lista de todos los commits (intermedios) que
puedes ver, inspeccionar o seleccionar con cherry-pick.

Para saber mds sobre esto, https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-
and-git-rebase/ proporciona un tratamiento bastante amplio. Es un buen recursos para problemas
que puedan surgir de forma ocasional pero que son muy oscuros para esta guia.

17

https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/
https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/

5.2.8.3. Cambiando a una Rama Diferente de FreeBSD

Si quieres cambiar de stable/12 a la rama current. Si tienes un clonado profundo, lo siguiente es
suficiente: [source,shell]

% git checkout main % # build and install here...

Sin embargo, si tienes una rama local, hay algun problema. Primero, rebase sobreescribira el
historico de forma que querras hacer algo para salvarlo. Segundo, saltar entre ramas suele causar
mas conflictos. Si imaginamos que el ejemplo anterior era relativo a stable/12, entonces para
moverlo a main, sugeriria lo siguiente:

it checkout no-color-1s
it checkout -b no-color-1s-stable-12 # create another name for this branch
it rebase -1 stable/12 no-color-1s --onto main

o
0 Vv Vv

Lo anterior se trae no-color-1s. Luego le da un nombre nuevo (no-color-ls-stable-12) en caso de que
necesites volver a ella. Después rebase sobre la rama main. Esto encontrara todos los commits de la
rama no-color-ls actual (hacia atras hasta donde se encuentra con la rama stable/12) y después los
aplicara de nuevo sobre la rama main creando una nueva rama no-color-Is alli (para lo cual te hice
crear un nombre tipo place holder).

5.3. Procedimientos MFC (Merge From Current)

5.3.1. Resumen

El flujo de trabajo de MFC se puede resumir como git cherry-pick -x mas git commit --amend para
ajustar el mensaje de commit. Para multiples commits, usa git rebase -i para refundirlos juntos y
editar el mensaje de commit.

5.3.2. MFC de un s6lo commit
% git checkout stable/X % git cherry-pick -x $HASH --edit

Para commits MFC, por ejemplo una importacion externa, necesitarias especificar un padre para
cherry-pick. Normalmente, seria el "primer padre" de la rama de la que estds haciendo cherry-pick,
asi que:

% git checkout stable/X % git cherry-pick -x $HASH -m 1 --edit

Si algo va mal, necesitaras abortar el cherry-pick con git cherry-pick --abort o arreglarlo y hacer
un git cherry-pick --continue.

Una vez terminado el cherry-pick, empuja con git push. Si recibes un error por haber perdido una

18

carrera por el commit, utiliza git pull --rebase y prueba a empujarlo de nuevo.

5.3.3. MFC a una rama RELENG

Se necesita mas cuidado para hacer MFCs a ramas para las cuales se necesita aprobacion. El
proceso es el mismo tanto para un merge tipico como para un commit directo excepcional.

* Integra o hace commit directamente a la rama stable/X apropiada antes de integrarlo en la
rama releng/X.Y.
« Utiliza el hash que esta en la rama stable/X para el MFC a la rama releng/X.Y.

* Deja ambas lineas "cherry picked from" en el mensaje de commit.

Asegurate de afiadir la linea Approved by: cuando estés en el editor.
% git checkout releng/13.0 % git cherry-pick -x $HASH --edit

Si se te olvida afiadir la linea Approved by:, puedes hacer un git commit --amend para editar el
mensaje de commit antes de empujar los cambios.

5.3.4. MFC de varios commits

% git checkout -b tmp-branch stable/X % for h in $HASH_LIST; do git cherry-pick -x $h;
done % git rebase -i stable/X # mark each of the commits after the first as 'squash' #
Actualiza el mensaje de commit para reflejar todos los cambios del mismo, si fuera
necesario. # Aseglrate de mantener las lineas "cherry picked from". % git push freebsd
HEAD:stable/X

Si el push falla por perder la carrera del commit, haz rebase y prueba de nuevo:

% git checkout stable/X % git pull % git checkout tmp-branch % git rebase stable/X %
git push freebsd HEAD:stable/X

Una vez que el MFC se ha completado, puedes borrar la rama temporal:

% git checkout stable/X % git branch -d tmp-branch

5.3.5. Haciendo MFC de una importacion externa

Las importaciones externas son lo unico en el drbol que crean un commit tipo merge en la rama
main. Seleccionar commits tipo merge en stable/XX representa una dificultad adicional porque hay
dos padres para un commit tipo merge. En general, querrds la diferencia del primer padre ya que
es la diferencia con main (aunque podria haber algunas excepciones).

19

% git cherry-pick -x -m 1 $HASH

es normalmente lo que quieres. Esto le dird a cherry-pick que aplique el diff correcto.

Hay algunos pocos casos (con suerte) donde es posible que la rama main haya sido mergeada hacia
atras por el script de conversion. Si ese fuera el caso (y todavia no hemos encontrado ninguno),
cambiarias lo de arriba por '-m 2' para escoger el padre adecuado. Simplemente haz:

% git cherry-pick --abort % git cherry-pick -x -m 2 $HASH

para hacerlo. El --abort limpiara el primer intento fallido.

5.3.6. Rehaciendo un MFC

Si haces un MFC y va terriblemente mal y quieres empezar de nuevo, lo mas facil es usar git reset
--hard asi: [source,shell]

% git reset --hard freebsd/stable/12

aunque si tienes algunas revisiones que quieres mantener, y otras que no,es mejor usar git rebase
-1.

5.3.7. Consideraciones cuando se hace un MFC

Cuando se hace commit the commits the codigo fuente a las ramas stable y releng, tenemos los
siguientes objetivos:
» Sefiala claramente los commits directos de aquellos que introducen un cambio desde otra rama.
 Evita introducir errores en las ramas stable y releng.

* Permite a los desarrolladores determinar qué cambias han sido o no traidos desde otra rama.
Con Subversion, usdbamos las siguientes practicas para conseguir estos objetivos:

» Usar las etiquetas MFC y MFS para marcar los commits que integran cambios desde otra rama.

* Compactar los commits de correcciones en el commit principal cuando se integra un cambio.

* Grabar mergeinfo de forma que svn mergeinfo --show-revs funcionara.
Con Git, necesitaremos usar diferentes estrategias para conseguir los mismos objetivos. Este
documento trata de definir las mejores practicas para conseguir estos objetivos con Git cuando se
mergean cambios de codigo fuente. En general, tratamos de usar el soporte nativo de Git para

conseguir los objetivos en lugar de forzar a realizar las practicas construidas sobre el modelo de
Subversion.

Una nota general: debido a las diferencias técnicas con Git, no utilizaremos los "merge commits" de
Git (creados mediante git merge) en las ramas stable o releng. En su lugar, cuando este documento

20

habla de "merge commits", significa el commit original hecho en main que es replicado o
"aterrizado" (landed) en una rama stable, 0 un commit de una rama stable que es replicado a una
rama releng con alguna variacion de git cherry-pick.

5.3.8. Encontrando Hashes Seleccionables para MFC

Git proporciona algo de soporte para esto mediante los comandos git cherry y git log --cherry.
Estos comandos comparan los diffs en crudo de los commits (pero no otros metadatos como los
mensajes de log) para determinar si dos commits son idénticos. Esto funciona bien cuando cada
commit de main se lleva como un sélo commit a la rama stable, pero falla si multiples commits de
main se compactan juntos como un solo commit en la rama stable. El proyecto utiliza mucho git
cherry-pick -x preservando todas las lineas para evitar estas dificultades y funciona con
herramientas automatizadas.

5.3.9. Estandares para los mensajes de commit

5.3.9.1. Marcar MFCs

El proyecto ha adoptado las siguientes practicas para marcar MFCs:

» Usa el flag -x con git cherry-pick. Esto afiade una linea al mensaje de commit que incluye el
hash del commit original cuando se hace el merge. Puesto que Git lo afiade directamente, los
committers no tienen que editar manualmente el log cuando hacen el merge.

Cuando se mergean varios commits, mantén todas las lineas "cherry picked from".

5.3.9.2. (Recortar Metadatos?

Un area que no estaba documentada de forma clara con Subversion (ni con CVS) era como
formatear los metadatos en los mensajes de log para los commits tipo MFC. ¢Deberia incluir los
metadatos del commit original sin modificar o se deberia modificar para reflejar la informacion
acerca del propio commit MFC?

Histéricamente la practica ha variado, aunque parte de la variacion es por campo. Por ejemplo,
MFCs relativos a un PR normalmente incluyen el campo PR en el MFC de forma que los commits
MFC se incluyen en el log de autoria del sistema de reportes de error (bug tracker). Con otros
campos esta menos claro. Por ejemplo, Phabricator muestra la diferencia entre el ultimo commit
etiquetado a una revision, de forma que incluir URLs de Phabricator reemplaza el commit principal
con los commits "aterrizados". La lista de revisores tampoco esta clara. Si un revisor ha aprobado
un cambio a main, ¢significa eso que han aprobado el commit MFC? ¢Es cierto si el codigo es
idéntico o con s6lo cambios triviales? Claramente no es cierto para trabajos mas extensivos. Incluso
para codigo idéntico ¢qué pasa si el commit no tiene conflicto pero introduce un cambio en el ABI?
Un revisor podria haber dado el visto bueno para un commit en main debido al rompimiento del
ABI pero podria no aprobar el mergeado del mismo commit tal cual. Cada uno tiene que usar su
mejor juicio hasta que acordemos unas directrices claras.

Para MFCs que estan regulados por re@, se afiaden nuevos campos de metadatos como la etiqueta
Approved by para commits aprobados. Estos nuevos metadatos se tendran que afadir con git
commit --amend o similar después de que el commit original haya sido revisado y aprobado.

21

También podriamos querer reservar algunos campos en los metadatos de los commtis MFC como
las URLs de Phabricator para uso futuro por parte de re@.

Preservar los metadatos existentes proporciona un flujo de trabajo sencillo. Los desarrolladores
usan git cherry-pick-x sin tener que editar el mensaje de log.

Si por el contrario escogemos ajustar los metadatos en los MFCs, los desarrolladores tendrdn que
editar los mensajes de log de forma explicita mediante el uso de git cherry-pick --edit o git
commit --amend. Sin embargo, comparado con svn, al menos el mensaje de commit existente se
puede precargar y los campos de metadatos se pueden afiadir o eliminar sin tener que reescribir el
mensaje de commit entero.

La conclusion es que los desarrolladores seguramente tengan que refinar los mensajes de commit
para los MFCs que no sean triviales.

5.4. Importaciones Externas con Git

Esta seccion describe en detalle el procedimiento para hacer importaciones de terceros con Git.

5.4.1. Convenciones en el nombrado de ramas

Todas las ramas de terceros y etiquetas comienzan con vendor/. Estas ramas y etiquetas son visibles
por defecto.

[NOTE] ==== Este capitulo sigue la convencion de que el origen freebsd es el nombre del origen del
repositorio Git oficial de FreeBSD. Si usas otra convencion, en los ejemplos de abajo reemplaza
freebsd con el nombre que uses en su lugar. ====

Exploraremos un ejemplo para actualizar el mtree de NetBSD que esta en nuestro arbol. La rama
externa para esto es vendor/NetBSD/mtree.

5.4.2. Actualizando una importacion externa antigua

Los arboles externos normalmente tienen sélo un subconjunto del software de terceros que es
apropiado para FreeBSD. Estos arboles son muy pequerios en comparacion con el arbol de FreeBSD.
Los worktrees de Git son por lo tanto bastante pequefios y rapidos y el método preferido a usar.
Asegurate de que el directorio que escojas debajo (el . ./mtree) no existe.

% git worktree add ../mtree vendor/NetBSD/mtree

5.4.3. Actualizar las Fuentes en la Rama Vendor

Prepara un arbol limpio, completo con las fuentes externas. Importa todo pero mergea s6lo lo que
es necesario.

Este ejemplo asume que las fuentes de NetBSD se han traido de su mirror de GitHub en
~/git/NetBSD. Date cuenta de que "upstream" podria haber afiadido o eliminado ficheros, por lo que
queremos asegurarnos de que los borrados también se propagan. Normalmente net/rsync esta

22

https://cgit.freebsd.org/ports/tree/net/rsync/

instalado asi que lo usaremos.

o

cd ../mtree
rsync -va --del --exclude=".git" ~/git/NetBSD/usr.sbin/mtree/ .
git add -A
git status

o° o°

o

git diff --staged

o° -

git commit -m "Vendor import of NetBSD's mtree at 2020-12-11"
vendor/NetBSD/mtree 8e7aa25fcf1] Vendor import of NetBSD's mtree at 2020-12-11
7 files changed, 114 insertions(+), 82 deletions(-)

% git tag -a vendor/NetBSD/mtree/20201211

— o° -

Nota: Ejecuto los comandos git diff y git status para asegurarme de que no hay nada raro.
También usé -m de forma ilustrativa, pero tu deberias componer un mensaje apropiado en un
editor (usando una plantilla para el mensaje de commit).

También es importante crear una etiqueta anotada utilizando git tag -a, de lo contrario el push
serd rechazado. S6lo se permite hacer push de etiquetas anotadas. Las etiquetas anotadas te dan
una oportunidad de introducir un mensaje de commit. Introduce la version que estas importando
asi como cualquier caracteristica que resalte o arreglos que lleve la version.

5.4.4. Actualizando la Copia de FreeBSD

En este momento puedes empujar la importacion a vendor en nuestro propio repo.
% git push --follow-tags freebsd vendor/NetBSD/mtree

--follow-tags le dice a git push que también empuje las etiquetas asociadas con la revision local de
la que se ha hecho commit.

5.4.5. Actualizando el arbol de fuentes de FreeBSD

Ahora necesitas actualizar el mtree en FreeBSD. Las fuentes estdn en contrib/mtree ya que es
software de terceros.

% cd ../src % git subtree merge -P contrib/mtree vendor/NetBSD/mtree

Esto generaria un commit merge para el subarbol contrib/mtree contra la rama local
vendor/NetBSD/mtree. Si hubiera conflictos, necesitarias arreglarlos antes de hacer el commit.
Incluye detalles en el mensaje de commit acerca de los cambios que se estdn mergeando.

23

5.4.6. Rebasando to cambio contra lo ultimo del arbol de fuentes de
FreeBSD

Puesto que la politica actual no recomienda utilizar meges, si el main de FreeBSD remoto avanzo
antes de que tuvieras oportunidad de hacer el push, tendrias que rehacer el merge.

Los git rebase 0 git pull --rebase habituales no saben como rebasar un commit tipo merge como
un commit merge, asi que tendrias que recrear el commit.

Se deberian seguir los siguientes pasos para facilitar recrear el commit tipo merge como si git
rebase --merge-commits hubiese funcionado adecuadamente:

Muévete al directorio raiz del repositorio
Crea una rama XXX con el contenido del arbol mergeado.

Actualiza este lado de la rama XXX para mergearla y tenerla actualizada respecto a la rama main
de FreeBSD.

- En el peor caso, tendrias que resolver conflictos, si hubiera alguno, pero esto deberia ser
raro.

- Resuelve los conflictos, y compacta varios commits en uno si es necesario (si no hay
conflictos, no hay necesidad de compactar)

Haz checkout de main
crea una rama YYY (permite deshacer los cambios si algo va mal)
Rehaz el merge del subarbol

En lugar de resolver conflictos en el subarbol mergeado, haz un checkout del contenido de XXX
encima de éL

o Elultimo . es importante, igual que lo es estar en el directorio raiz del repositorio.
o En lugar de cambiar a la rama XXX, pone el contenido de XXX sobre el repositorio.

Haz commit del repositorio con el mensaje de commit anterior (el ejemplo asume que so6lo hay
un merge en la rama XXX).

Asegurate de que las ramas son iguales.
Haz las revisiones que necesites, incluyendo involucrar a otros si crees que es necesario.

Empuja el commit, si has 'perdido la carrera’ otra vez, simplemente haz otra vez estos pasos (lee
mas abajo para una receta)

Borra las ramas una vez que el commit esta en el repositorio. Son desechables.

Los comandos que uno usaria, siguiendo el ejemplo de mtree, seria como esto (el simbolo # marca
un comentario para ayudar y enlazar los comandos con las descripciones de arriba):

24

o o° of o°

o

cd ../src # cambiar a la raiz del arbol

git checkout -b XXX # crea la rama XXX de usar y tirar para hacer el merge
git fetch freebsd # Obtiene los datos de upstream

git merge freebsd/main # Mergea los cambios y resuelve conflictos

git checkout -b YYY freebsd/main # Crea una nueva rama de usar y tirar YYY para

rehacer
% git subtree merge -P contrib/mtree vendor/NetBSD/mtree # Redo subtree merge

% git checkout XXX . # La rama XXX tiene 1a resolucidn del conflicto

% git commit -c¢ XXX~1 # -c reutiliza el mensaje de commit del commit anterior al
rebase

% git diff XXX YYY # Deberia estar vacio

% git show YYY # S0lo deberia tener los cambios que quieres, y ser un commit

merge desde 1a rama del vendor

Nota: si algo va mal con el commit, puedes resetear la rama YYY para comenzar de nuev volviendo a
ejecutar el comando checkout que la cre6 con -B :

% git checkout -B YYY freebsd/main # Crea una nueva rama YYY de usar y tirar si
empezar desde cero es mas sencillo

5.4.7. Empujando los cambios

Una vez que crees que tienes un conjunto de diferencias que es bueno, puedes empujarlo a un fork
de GitHub o Gitlab para que otros lo revisen. Una cosa buena de Git es que te permite publicar
borradores de tu trabajo para que otros lo revisen. Mientras que Phabricator es bueno para
revision de contenido, publicar una rama externa actualizada y los commits tipo merge permite a
otros comprobar los detalles tal y como apareceran eventualmente en el repositorio.

Después de la revision, cuando estas seguro de que es un buen cambio, puedes empujarlo al repo
de FreeBSD:

% git push freebsd YYY:main # put the commit on upstream's 'main' branch % git branch
-D XXX # Throw away the throw-a-way branches. % git branch -D YYY

Nota: He usado XXX y YYY para que sea obvio que son nombres horribles que no deberian abandonar
tu maquina. Si usas esos nombres para otro trabajo, necesitards escoger nombres diferentes, o
arriesgarte a perder el otro trabajo. No hay nada magico sobre estos nombres. Upstream no te
permitird empujarlos, pero de todas formas, por favor presta atencion a los comandos exactos de
arriba. Algunos comandos usan sintaxis que es algo diferente respecto de los casos tipicos y ese
comportamiento diferente es critico para que esta receta funcione.

5.4.8. Como rehacer cosas si es necesario

Si has intentado empujar los cambios de la seccion anterior y ha fallado, entonces deberias hacer lo
siguiente para rehacer' las cosas. Esta secuencia mantiene el commit cno el mensaje de commit
simpre en XXX~1 para que sea mas facil.

% git checkout -B XXX YYY # recreate that throw-away-branch XXX and switch to it %
git merge freebsd/main # Merge the changes and resolve conflicts % git checkout -B YYY
freebsd/main # Recreate new throw-away YYY branch for redo % git subtree merge -P
contrib/mtree vendor/NetBSD/mtree # Redo subtree merge % git checkout XXX . #

25

XXX branch has the conflict resolution % git commit -c XXX~1 # -c reuses the
commit message from commit before rebase

Después haz el checkout como arriba y empuja los cambios como arriba cuando estén listos.

5.5. Crear una nueva rama externa

Hay varias formas de crear una nueva rama externa. La forma recomendada es crear un nuevo
repositorio y después mergearlo con FreeBSD. Supongamos que se importa glorbnitz en el drbol de
FreeBSD, release 3.1415. Por simplicidad, no recortaremos esta release. Es un simple comando de
usuario que pone el dispositivo nitz en diferentes estados magicos glorb y es suficientemente
pequefio como para que recortarlo no ahorre demasiado.

5.5.1. Crear el repo

% cd /some/where % mkdir glorbnitz % cd glorbnitz % git init % git checkout -b
vendor/glorbnitz

En este momento, tienes un nuevo repo, donde irdn todos los commits de la rama vendor/glorbnitz.

Los expertos en Git pueden hacer esto directamente en su clon de FreeBSD usando git checkout
--orphan vendor/glorbnitz si asi se sienten mas comodos.

5.5.2. Copia las fuentes

Puesto que es una nueva importacion, puedes simplemente usar cp, o tar o incluso rsync como se
muestra arriba. Y afiadiremos todo, asumiendo que no hay ficheros dot.

% cp -r ~/glorbnitz/* . % git add *
En este punto, deberias tener una copia pristina de glorbnitz lista para hacer commit.
% git commit -m "Import GlorbNitz frobnosticator revision 3.1415"

Como arriba, he usado -m por simplicidad, pero seguramente deberias crear un mensaje de commit
que explica qué es un Glorb y por qué usarias un Nitz para conseguirlo. No todo el mundo lo sabra
asi que para tu commit de verdad, deberias seguir la seccion mensaje de log del commit en lugar de
emular el estilo corto utilizado aqui.

5.5.3. Ahora importa en nuestro repositorio

Ahora necesitas importar la rama en nuestro repositorio.

0,

% cd /path/to/freebsd/repo/src % git remote add glorbnitz /some/where/glorbnitz % git

26

fetch glorbnitz vendor/glorbnitz

Fijate que la rama vendor/glorbnitz estd en el repo. En este momento puedes borrar
/some/where/glorbnitz si quieres. Ha cumplido su labor.

5.5.4. Etiquetas y push

Los pasos desde aqui en adelante son basicamente los mismos que en el caso de la actualizacion de
una rama externa, aungue sin el paso de actualizar la rama externa.

% git worktree add ../glorbnitz vendor/glorbnitz % cd ../glorbnitz % git tag
--annotate vendor/glorbnitz/3.1415 # Make sure the commit is good with "git show" %
git push --follow-tags freebsd vendor/glorbnitz

Por 'bueno' nos referimos a:

. Todos los ficheros estan presentes

. Ninguno de los ficheros erréneos esta presente

1
2
3. Larama vendor apunta a algo que tiene sentido
4. La etiqueta tienen buena pinta, y esta anotada
5

. El mensaje de commit para la etiqueta tiene un resumen con las novedades respecto de la
ultima etiqueta

5.5.5. Momento de mergear finalmente en el arbol base

o

cd ../src

git subtree add -P contrib/glorbnitz vendor/glorbnitz

Make sure the commit is good with "git show"

git commit --amend # one last sanity check on commit message
git push freebsd

o T of

o

Aqui 'bueno’ significa:

1. Todos los ficheros correctos, y ninguno de los incorrectos, se mergearon en contrib/glorbnitz.
2. No hay otros cambios en el arbol.

3. Los mensajes de commit estan bien. Deberia contener un resumen de lo que ha cambiado desde
el ultimo merge a la rama main de FreeBSD asi como cualquier problema.

4. Se deberia actualizar UPDATING si hay algo que resefiar, como cambios visibles por el usuario,
preocupaciones sobre la actualizacion, etc.

o Todavia no hemos conectado glorbnitz a la construccion. Hacerlo es especifico al
software que se importa y esta fuera del alcance de este tutorial.

27

5.5.5.1. Mantenerse actualizado

El tiempo pasa. Es momento de actualizar el arbol con los ultimos cambios. Cuando haces un
checkout de main asegurate de que no tienes diferencias. Es mucho mas facil hacer commit de esos
cambios en una rama (o utilizar git stash) antes de hacer lo siguiente.

Si estds acostumbrado a git pull recomendamos encarecidamente el uso de la opcién --ff-only y
ademads establecerla como la opcion por defecto. De forma alternativ, git pull --rebase es util si
tienes cambios guardados en la rama main.

% git config --global pull.ff only

Podrias necesitar omitir el --global si quieres que esta configuracion solo aplique en este
repositorio.

% cd freebsd-src % git checkout main % git pull (--ff-only|--rebase)

Hay un problema habitual, que la combinacién del comando git pull intentara hacer un merge,
que algunas veces creara un commit de tipo merge que no existia antes. Esto puede ser dificil de
arreglar.

La forma larga también se recomienda.

% cd freebsd-src % git checkout main % git fetch freebsd % git merge --ff-only
freebsd/main

Estos comandos restauran tu arbol a la rama main y después lo actualizan desde donde hiciste el
pull originalmente. Es importante cambiarse a main antes de hacer esto de forma que avance. Ahora
es momento de avanzar los cambios:

% git rebase -1 main working

Esto traerd un pantalla interactiva para cambiar los valores por defecto. Por ahora, simplemente sal
del editor. Todo deberia aplicar. Si no, necesitaras resolver los diffs. Este documento de github te
puede ayudar en el proceso.

5.5.5.2. Momento de empujar los cambios

Primero, asegurate de que la URL de push estd correctamente configurada para el repositorio
remoto.

% git remote set-url --push freebsd ssh://git@gitrepo.freebsd.org/src.git

Después, verifica que el usuario y el email estan correctamente configurados. Requerimos que
coincidan exactamente con la entrada del fichero passwd del cluster de FreeBSD.

28

https://docs.github.com/en/free-pro-team@latest/github/using-git/resolving-merge-conflicts-after-a-git-rebase

Usa

freefall% gen-gitconfig.sh

en freefall.freebsd.org para obtener un texto que puedes usar directamente, asumiendo que
/usr/local/bin esta en el PATH.

El comando de abajo integra la rama working en la linea principal. Es importante que filtres tus
cambios para que sean justo lo que quieres en el repo de fuentes de FreeBSD antes de hacer esto.
Esta sintaxis empuja la rama working a main, avanzando la rama main. S6lo podras hacer esto si
resulta en un cambio lineal a main(es decir, no merges).

% git push freebsd working:main

Si se rechaza tu push debido a que perdiste una carrera, haz un rebase de tu rama antes de
intentarlo de nuevo:

% git checkout working % git fetch freebsd % git rebase freebsd/main % git push
freebsd working:main

5.5.5.3. Momento de empujar los cambios (alternativa)

Algunas personas encuentran mds facil mergear sus cambios a su main local antes de empujarlos al
repositorio remoto. También git arc stage mueve los cambios de una rama al main local cuando
necesitas hacer un subconjunto de una rama. Las instrucciones son similares a las de la seccion
anterior: [source,shell]

% git checkout main % git merge --ff-only ‘working' % git push freebsd

Si pierdes la carrera, inténtalo de nuevo con

% git pull --rebase % git push freebsd

Estos comandos recuperaran el freebsd/main mas reciente y después rebasara los cambios del main
local encima, que es lo que quieres cuando pierdes una carrera por el commit. Nota: integrar
commits de ramas externas no funcionara con esta técnica.

5.5.5.4. Encontrar la Revision de Subversion

Tendras que asegurarte de que has recuperado las notas (lee Uso diario para mas detalles). Una vez
que las tengas, las notas se mostraran el comando git log de la siguiente forma:

% git log

29

Si tienes una version especifica en mente, puedes utilizar esto:
% git log --grep revision=XXXX

para encontrar la revision especifica. El niumero hexadecimal después de 'commit’ es el hash que
puedes usar para referirte a este commit.

5.6. Git FAQ

Esta seccidon proporciona un numero de respuestas para usuarios y desarrolladores a preguntas
que suelen surgir a menudo.

Usamos la convencion habitual de tener el origen del repositorio de FreeBSD en

o 'freebsd’ en lugar del 'origin' por defecto para permitir que la gente use ese para
sus propios desarrollo y para minimizar los pushes "ooops" al repositorio
incorrecto.

5.6.1. Usuarios

5.6.1.1. Como puedo monitorizar -current y -stable con una sola copia del repositorio?

Q: Aunque el espacio en disco no es un asunto importante, es mas eficiente usar sé6lo una copia del
repositorio. Con SVN podia tener varios arboles del mismo repositorio. ;Como hago esto con Git?

A: Puedes usar worktrees. Hay varias formas de hacer esto, pero la mds sencilla es utilizar un clone
para monitorizar -current, y un worktree para hacer lo mismo con las releases stables. Aunque usar
un 'repositorio desnudo' se ha propuesto como una forma de lidiar con esto, es mas complicado y
no se documentara aqui.

Primero, necesitas un clon de un repositorio de FreeBSD, mostrado aqui en freebsd-current para
reducir la confusion. $URL es el mirror que mejor que funcione:

% git clone -o freebsd --config remote.freebsd.fetch="+refs/notes/*:refs/notes/*"' $URL
freebsd-current

que una vez clonado, puedes simplemente crear un worktree a partir de él:

% cd freebsd-current % git worktree add ../freebsd-stable-12 stable/12

esto se traerd stable/12 a un directorio llamado freebsd-stable-12 que es un analogo al directorio
freebsd-current. Una vez creado se actualiza de forma similar a como cabria esperar:

% cd freebsd-current % git checkout main % git pull --ff-only # changes from upstream
now local and current tree updated % cd ../freebsd-stable-12 % git merge --ff-only

30

freebsd/stable/12 # now your stable/12 is up to date too

Recomiendo usar --ff-only porque es mas seguro y evita que te metas accidentalmente en una
'‘pesadilla de integraciones' donde tienes un cambio extra en tu drbol, forzandote a una integracion
complicada en lugar de hacer uno sencillo.

Aqui hay un buen texto que tiene mas detalles.

5.6.2. Desarrolladores

5.6.2.1. jOoops! He hecho commit en main en lugar de en otra rama.

Q: De vez en cuando meto la pata y hago un commit en main en lugar de una rama. ;Qué hago?
A: Primero, que no te entre el panico.

Segundo, no hagas push. De hecho, puedes arreglar casi cualquier cosa si no has hecho push. Todas
las respuestas en esta seccion asumen que no se ha hecho push.

La siguiente respuesta asume que has hecho commit en main y quieres crear una rama llamada
issue:

% git branch issue # Create the "issue' branch
% git reset --hard freebsd/main # Reset 'main' back to the official tip
% git checkout issue # Back to where you were

5.6.2.2. jOoops! jHe hecho commit de algo en la rama equivocada!

Q: Estaba trabajando en una caracteristica en la rama wilma, pero accidentalmente he hecho
commit de un cambio relacionado con la rama fred en la rama wilma. ;Qué hago?

A: La respuesta es similar a la anterior pero escogiendo cambios (cherry picking). Se asume que
s6lo hay un commit en wilma, pero lo generalizaremos a situaciones mas complicadas. También se
asume que es el ultimo commit en wilma (por lo tanto se usa wilma en el comando git cherry-
pick), pero también se puede generalizar.

We're on branch wilma % git checkout fred # move to fred branch % git cherry-
pick wilma # copy the misplaced commit % git checkout wilma # go back to
wilma branch % git reset --hard HEADA # move what wilma refers to back 1 commit

Los expertos en Git primero rebobinarian la rama wilma en 1 commit, cambiarian a la rama fred y
después usarian git reflog para ver cudl era el commit borrado para poder hacer cherry-pick
sobre él.

Q: Pero ¢Y si quiero hacer commit de unos cuantos cambios a main, pero dejar el resto en wilma por
algan motivo?

A: La misma técnica de arriba funciona si quieres llevar partes de la rama en la que estas

31

https://adventurist.me/posts/00296

trabajando a main antes de que el resto de la rama estd listo (digamos que has visto un error
ortografico no relacionado, o has arreglado un bug puntual). Puedes usar seleccionar esos cambios
y llevarlos a main, luego empuja al repositorio padre. Una vez hecho esto, limpiar no podria ser mas
facil: simplemente git rebase -i. Git se dara cuenta de que has hecho esto y omitird los cambios
comunes automaticamente (incluso si tienes que cambiar el mensaje de commit o modificar el
commit ligeramente). No hay necesidad de cambiar de nuevo a wilma para ajustarlo: jsimplemente
rebasalo!

Q: Quiero separar algunos cambios de la rama wilma y llevarlos a una rama fred

A: La respuesta mds general seria la misma que previamente. Crearias la rama fred, escogerias los
cambios que quieres de wilma uno a uno, luego rebasa wilma para eliminar esos cambios que has
seleccionado. git rebase -i main wilma te llevard a un editor, luego elimina las lineas pick que se
corresponden con los cambios que has llevado a fred. Si todo va bien y no hay conflictos, has
terminado. Si no, necesitaras resolver los conflictos sobre la marcha.

La otra forma de hacer esto seria hacer un checkout de wilma y luego crear la rama fred apuntando
al mismo punto del arbol. Después puedes hacer git rebase -i en ambas ramas, seleccionando los
cambios que quieres en fred o wilma manteniendo las lineas "pick” y eliminando el resto en el
editor. Algunas personas crearian una etiqueta/rama llamada pre-split antes de empezar por si
algo va mal. Puedes deshacerlo con la siguiente secuencia:

% git checkout pre-split # Go back % git branch -D fred # delete the fred
branch % git checkout -B wilma # reset the wilma branch % git branch -d pre-
split # Pretend it didn't happen

El ultimo paso es opcional. Si vas a intentar hacer el split de nuevo, lo omitirias.

Q: Pero lo he hecho todo como he leido que se hacia y no he visto tu consejo al final para crear una
rama y ahora fred y wilma estdn hechas un lio. ¢Como sé cudl era el estado de wilma antes de que
empezara? No sé cuantas veces he movido las cosas de sitio.

A: No todo esta perdido. Puedes averiguarlo, siempre que no haya pasado mucho tiempo o haya
habido muchos commits (cientos).

Creé una rama wilma e hice commit de un par de cosas, luego decidi que queria dividirla en fred y
wilma. No pasé nada raro cuando lo hice, pero digamos que hubiera sido asi. La forma de ver lo
que has hecho es con git reflog:

% git reflog 6ff9c25 (HEAD -> wilma) HEAD@{0}: rebase -i (finish): returning to
refs/heads/wilma 6ff9c25 (HEAD -> wilma) HEAD@{1}: rebase -i (start): checkout main
869cbd3 HEAD@{2}: rebase -1 (start): checkout wilma a6a5094 (fred) HEAD@{3}: rebase -i
(finish): returning to refs/heads/fred a6a5094 (fred) HEAD@{4}: rebase -i (pick):
Encourage contributions 1ccd109 (freebsd/main, main) HEAD@{5}: rebase -i (start):
checkout main 869cbd3 HEAD@{6}: rebase -i (start): checkout fred 869cbd3 HEAD@{7}:
checkout: moving from wilma to fred 869cbd3 HEAD@{8}: commit: Encourage contributions

9
. %

32

Aqui vemos los cambios que he hecho. Puedes utilizarlo para averiguar donde han empezado a ir
mal las cosas. Sefialaré unas pocosas cosas. La primera es que HEAD@{X} es algo relacionado con
los commits de forma que lo puedes usar como argumento para algunos comandos. Aunque si ese
comando hace commit de algo en el repositorio, la X cambia. También puedes usar el hash (primera
columna).

Luego, 'Encourage contributions' fue el ultimo commit que hice en wilma antes de que decidiera
separar las ramas. Puedes ver ahi el mismo hash que cuando creé la rama fred. Empecé rebasando
fred y puedes ver el 'start', cada paso y el 'finish' para ese proceso. Aunque no sea necesario ahora,
puedes averiguar exactamente lo que pasd. Afortunadamente, para arreglar esto, puedes seguir los
pasos de la respuesta anterior pero con el hash 869cbd3 en lugar de pre-split. Aunque puede
parecer un poco verboso, es facil de recordar ya que haces una cosa cada vez. También puedes
apilar:

% git checkout -B wilma 869cbd3 % git branch -D fred

y ya estas listo para probar de nuevo. El 'checkout -B' con el hash combina hacer checkout y crear
una rama. El -B en lugar de -b fuerza el movimiento de una rama pre-existente. De cualquiera de las
maneras funciona, lo que esta genial (y también es horrible) en Git. Un motivo por el que suelo usar
git checkout -B xxxx hash en lugar de hacer checkout del hash y después crear / mover la rama es
simplemente para evitar el mensaje ligeramente angustioso sobre los 'detached heads'

% git checkout 869cbhd3 M faq.md Note: checking out '869cbd3’.

You are in 'detached HEAD' state. You can look around, make experimental changes and
commit them, and you can discard any commits you make in this state without impacting
any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may do so (now or
later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 869cbd3 Encourage contributions % git checkout -B wilma

esto produce el mismo efecto, pero tengo que leer mucho mas y las cabezas cortadas (detached
heads) no es una imagen que me guste contemplar.

5.6.2.3. jOoops! He hecho un git pull y he creado un commit tipo merge, ;qué hago?

Q: Estaba con el piloto automatico y he hecho git pull desde mi arbol de desarrollo y eso ha creado
un commit tipo merge en la rama main. ;Como lo recupero?

A: Esto puede pasar cuando invocas el pull con un checkout de tu rama de desarrollo.

Justo después del pull, tendras en el checkout el nuevo commit tipo merge. Git soporta la sintaxis
HEADM para examinar los padres de un commit tipo merge:

33

git log --oneline HEADA1 # Look at the first parent's commits
git log --oneline HEADA2 # Look at the second parent's commits

A partir de esos logs, puedes identificar facilmente qué commit es tu trabajo de desarrollo. Después
simplemente restaura tu rama al HEAD # correspondiente:

git reset --hard HEADA2

Q: Pero también necesito arreglar mi rama main. ;{Cémo lo hago?
A: Git controla las ramas del repositorio remoto en el espacio de nombres freebsd/. Para arreglar tu
rama main, simplemente ponla apuntando al main de tu remoto:

git branch -f main freebsd/main

No hay nada magico en las ramas de Git: tan sélo son etiquetas en un grafo que se mueven
automaticamente hacia adelante cuando se hacen commits. Asi que lo de arriba funciona porque
tan solo estamos moviendo una etiqueta. Debido a ello, no hay metadatos de la rama que se
necesiten preservar.

5.6.2.4. Mezclando y combinando ramas

Q: Digamos que tengo dos ramas worker y async que me gustaria combinar en una rama llamada
feature ala vez que mantengo los commits de ambas.

A: Esto es trabajo para cherry pick.

% git checkout worker % git checkout -b feature # create a new branch % git cherry-
pick main..async # bring in the changes

Ahora tienes una nueva rama llamada feature. Esta rama combina commits de ambas ramas.
Puedes filtrar mas utilizando git rebase.

Q: Tengo una rama llamada driver y me gustaria partirla en kernel y userland de forma que pueda
hacerlas evolucionar por separado y hacer commit en cada rama cuando estén listas.

A: Esto necesita un poco de trabajo preparatorio, pero git rebase hara todo el trabajo duro.

% git checkout driver # Checkout the driver % git checkout -b kernel # Create
kernel branch % git checkout -b userland # Create userland branch

Ahora tienes dos ramas idénticas. Es momento de separar los commits. Asumiremos inicialmente
que todos los commits de driver van en las ramas kernel o en userland pero no en ambas.

34

% git rebase -i main kernel

y simplemente incluye los cambios que quieres (con una linea 'p' o 'pick’) y borra los commits que
no quieres (da miedo, pero si sucede lo peor, puedes tirar todo esto a la basura y empezar de nuevo
con la rama driver ya que todavia no la has movido).

% git rebase -1 main userland

y haz lo mismo que hiciste con la rama kernel.

Q: {Oh, genial! Segui las instrucciones de arriba y me olvidé de hacer commit en la rama kernel.
¢Como lo arreglo?

A: Puedes usar la rama driver para encontrar el hash del commit que falta y seleccionarlo con
cherry pick.

% git checkout kernel % git log driver % git cherry-pick $HASH

Q: OK. Tengo la misma situacion que arriba, pero mis commits estan todos mezclados. Necesito que
partes de un commit vayan a una rama y el resto a otra. De hecho, tengo varias. Tu método basado
en rebase suena complicado.

A: En esta situacion, lo mejor seria filtrar la rama original para separar los commits y luego usar el
método descrito arriba para separar las ramas.

Asumamos que s6lo hay un commit con un drbol limpio. Puedes usar git rebase con una linea edit
0 puedes usarlo con el commit en el extremo (tip). Los pasos son los mismos de cualquiera de las
dos formas. Lo primero que tenemos que hacer es echar atrds un commit mientras dejamos los
cambios en el rbol sin hacer commit:

% git reset HEADA

Nota: No afiadas, repito no afiadas --hard aqui porque esto también elimina los cambios de tu arbol.

Ahora, si tienes suerte, el cambio que necesita partirse cae completamente en las lineas del fichero.
En ese caso puedes hacer el git add habitual para los ficheros de cada grupo y luego hacer git
commit. Nota: cuando hagas esto, perderas el mensaje de commit al hacer el reset, asi que si lo
necesitas por algun motivo, deberias guardar una copia (aunque git log $HASH puede recuperarlo).

Si no tienes suerte, tendrds que partir ficheros. Hay otra herramienta para hacer eso que puedes
aplicar en cada fichero.

git add -1 foo/bar.c

iterard por los diffs, preguntdndote a cada paso si quieres incluir o excluir un trozo del cambio.

35

Cuando hayas terminado, haz git commit y tendrds lo que quede en tu 4rbol. Puedes ejecutarlo
varias veces también o incluso en varios ficheros (aunque encuentro mds facil hacerlo en un
fichero cada vez y después utilizar git rebase -i para agrupar juntos commits que estan
relacionados).

5.6.3. Clonar y Duplicar (crear un mirror)
Q: Me gustaria crear un mirror de todo el repositorio Git, ;como lo hago?

A: Si todo lo que quieres es un mirror, entonces
% git clone --mirror $URL
hara lo que quieres. Sin embargo, hay dos desventajas si quieres utilizar esto para algo mas que

hacer un mirror del cual crearas un clon.

Primero, esto es un 'repositorio desnudo' que tiene la base de datos del repositorio, pero no tiene
ningun worktree. Esto es genial para crear un mirror, pero es terrible para el trabajo del dia a dia.
Hay maneras de solventar esto con 'git worktree":

% git clone --mirror https://git.freebsd.org/ports.git ports.git % cd ports.git % git
worktree add ../ports main % git worktree add ../quarterly branches/2020Q4 % cd
../ports

Pero si no estds usando tu mirror para hacer mas clones locales, entonces esta es una alternativa
algo pobre.

La segunda desventaja es que Git normalmente sobrescribe las refs (nombres de ramas, etiquetas,
etc) del repositorio remoto de forma que tus refs locales pueden evolucionar de forma
independiente. Esto significa que perderds los cambios si haces commit a este repositorio en
cualquier sitio que no sean ramas de proyectos privados.

Q: ¢Qué puedo hacer entonces?

A: Puedes agrupar todas las refs del repositorio remoto en un espacio de nombres privado en tu
repositorio local. Git clona todo mediante un 'refspec' y el refspec por defecto es:

fetch = +refs/heads/*:refs/remotes/freebsd/*

que le dice que se traiga las refs de la rama.

Sin embargo, el repositorio de FreeBSD tiene otras cosas. Para verlas, puedes afiadir refspects de
forma explicita para cada espacio de nombres o puedes traértelo todo. Para configurar tu
repositorio para que haga eso:

git config --add remote.freebsd.fetch "+refs/*:refs/freebsd/*'

36

que pondra todo el repositorio remoto en tu espacio de nombres 'refs/freebsd/' de tu repositorio
local. Por favor, date cuenta de que esto también se trae ramas externas sin convertir y el numero
de refs que tienen asociadas es bastante grande.

Necesitaras hacer referencia a estas 'refs' con su nombre completo porque no son espacios de
nombres regulares de Git.

git log refs/freebsd/vendor/z1ib/1.2.10

mostraria el log de la rama externa para zlib comenzando en 1.2.10.

5.7. Colaborando con otros

Una de las claves para un buen desarrollo de software en un proyecto tan grande como FreeBSD es
la habilidad para colaborar con otros antes de que empujes tus cambios al arbol. Los repositorios
Git del proyecto FreeBSD todavia no permiten la creacién de ramas de usuario que puedan ser
empujadas al repositorio y por lo tanto si quieres compartir tus cambios con otros debes usar otro
mecanismo como GitLab o GitHub, para compartir los cambios en una rama generada por el
usuario.

Las siguientes instrucciones muestran como preparar una rama de usuario, basada en la rama main
de FreeBSD y como empujarla a GitHub.

Antes de empezar, asegurate de que tu repo local de Git estd actualizado y tiene los origenes
correctos como se muestra arriba.

\

% git remote -V freebsd https://git.freebsd.org/src.git (fetch) freebsd
ssh://gitegitrepo.freebsd.org/src.git (push) '

El primer paso es crear un fork de FreeBSD en GitHub siguiendo estas instrucciones. El destino del
fork deberia ser tu propia cuenta personal de GitHub (en mi caso gvnn3).

Ahora afiade un remoto a tu sistema local que apunte a tu fork: [source,shell]
% git remote add github git@github.com:gvnn3/freebsd-src.qgit % git remote -v github
git@github.com:gvnn3/freebsd-src.qgit (fetch) github gitegithub.com:gvnn3/freebsd-

src.git (push) freebsd https://qit.freebsd.org/src.qgit (fetch) freebsd
ssh://git@qgitrepo.freebsd.org/src.git (push)

Una vez hecho esto puedes crear una rama como se muestra arriba.
% git checkout -b gnn-pr2001-fix

Haz las modificaciones que quieras en tu rama. Compila, prueba y una vez que estés listo para
colaborar con otros es momento de empujar tus cambios a la rama. Antes de que puedas hacerlo,
deberds establecer el upstream apropiado, ya que Git te lo pedird la primera vez que intentes
empujar a tu remoto en github:

37

https://git.freebsd.org/src.git
https://git.freebsd.org/src.git
https://git.freebsd.org/src.git
https://github.com/freebsd/freebsd-src
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo

% git push github fatal: The current branch gnn-pr2001-fix has no upstream branch. To
push the current branch and set the remote as upstream, use

git push --set-upstream github gnn-pr2001-fix

Establecer el push como git recomienda hace que se pueda completar con éxito:

% git push --set-upstream github gnn-feature

Enumerating objects: 20486, done.

Counting objects: 100% (20486/20486), done.

Delta compression using up to 8 threads

Compressing objects: 100% (12202/12202), done.

Writing objects: 100% (20180/20180), 56.25 MiB | 13.15 MiB/s, done.

Total 20180 (delta 11316), reused 12972 (delta 7770), pack-reused @

remote: Resolving deltas: 100% (11316/11316), completed with 247 local objects.
remote:

remote: Create a pull request for 'gnn-feature' on GitHub by visiting:

remote: https://qithub.com/qvnn3/freebsd-src/pull/new/gnn-feature
remote:

To github.com:gvnn3/freebsd-src.git

[new branch] gnn-feature -> gnn-feature

Branch 'gnn-feature' set up to track remote branch 'gnn-feature' from 'github'.
Los siguientes cambios en la rama se podran empujar correctamente con el comando por defecto:

% git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 314 bytes | 1024 bytes/s, done.
Total 3 (delta 1), reused 1 (delta @), pack-reused 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:gvnn3/freebsd-src.git
9e5243d7b659. .cfbaeb8d7dda gnn-feature -> gnn-feature

En este momento tu trabajo estd en tu rama de GitHub y puedes compartir el enlace con otros
colaboradores.

5.8. Traer al proyecto una pull request de github

Esta seccion documenta cdmo traerse una pull request de GitHub que se ha hecho contra los mirros
de Git de FreeBSD en GitHub. Aunque en este momento esta no es una forma oficial de enviar
parches, a veces buenos arreglos vienen de esta forma y es mas facil cogerlos del arbol de un
committer que hacerles que lo empujen al arbol de FreeBSD desde ahi. Se pueden usar pasos
similares para traerse ramas de otros repositorios. Cuando se hace commit de pull requests de

38

otros, se debe tener especial cuidado en examinar todos los cambios para asegurar que son
exactamente lo que representan.

Antes de empezar, asegurate de que tu repo local de Git esta actualizado y de que tiene el origen
correctamente establecido como se muestra arriba. Ademads, asegurate de tener los siguientes
origenes: [source,shell]

% git remote -v freebsd https://git.freebsd.org/src.git (fetch) freebsd
ssh://git@qgitrepo.freebsd.org/src.git (push) github
https://github.com/freebsd/freebsd-src (fetch) github
https://qgithub.com/freebsd/freebsd-src (fetch)

Muchas veces las pull requests son sencillas: peticiones que contienen un sélo commit. En este caso,
se puede utilizar una aproximacion directa, aunque la aproximacion de la seccion anterior también
funciona. Aqui se crea una rama, se selecciona el cambio con cherry pick, se ajusta el mensaje de
commit y se hacen controles de calidad antes de empujar el cambio. En este ejemplo se usa la rama
staging pero podria utilizarse cualquier nombre. Esta técnica funciona para cualquier numero de
commits que haya en la pull request, especialmente cuando el cambio se puede aplicar
limpiamente al arbol de FreeBSD. Sin embargo, cuando hay varios commits, especialmente cuando
se necesitan pequefios ajustes, git rebase -i funciona mejor que git cherry-pick. Brevemente,
estos comandos crean una rama; seleccionan los cambios de la rama del pull request; los prueban;
ajustan los mensajes de commit; y lo mergean de vuelta a main haciendo un fast forward. El nimero
de PR abajo es $PR. Cuando se ajusta el mensaje, afiade Pull Request: https://github.com/freebsd-
src/pull/$PR. Todas las pull requests enviadas al repositorio de FreeBSD deberian ser revisadas por
al menos una persona. No es necesario que sea la persona que hace el commit, pero en ese caso la
persona que lo hace deberia confiar en la competencia de los otros revisores para revisar el
commit. Los committers que hacen revision de codigo de una pull request antes de empujarla al
repo deberian afiadir una linea Reviewed by: al commit, porque en este caso no es implicito. Afiade
también a la linea Reviewed by: a cualquiera que revise y apruebe el commit en github. Como
siempre, se debe poner cuidado para asegurar que el cddigo hace lo que se supone que hace y que
no hay cédigo malicioso.

Ademads, por favor asegurate de que el nombre del autor de la pull request no es
anonimo. El interfaz web de edicion de GitHub genera nombres como:

e Author: github-user <38923459+github-user@users.noreply.github.com>

Se deberia hacer una solicitud educada al autor para que proporcione un nombre
mejor y/o un email. Se deberia poner cuidado para asegurar de que no hay
problemas de estilo ni se introduce codigo malicioso.

% git fetch github pull/$PR/head:staging % git rebase -i main staging # to move the
staging branch forward, adjust commit message here <do testing here, as needed> % git
checkout main % git pull --ff-only # to get the latest if time has passed % git

checkout main % git merge --ff-only staging <test again if needed> % git push freebsd

39

https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR

--push-option=confirm-author

Para pull requests complicadas que tienen varios commits con conflictos, sigue el siguiente
esquema.

haz checkout de la pull request git checkout github/pull/XXX

crea una rama para hacer un rebase git checkout -b staging

rebasa la rama staging con lo ultimo de main con git rebase -i main staging

resuelve conflictos y haz las pruebas que sean necesarias

haz fast forward de la rama staging in la rama main como arriba

ultimas comprobaciones de cambios para asegurarse de que todo esta bien

N o ke W

empuja al repositorio Git de FreeBSD.

Esto también funcionard cuando nos traigamos ramas desarrolladas en otros sitios hasta el
arbol local para hacer commit.

Una vez que hayas terminado con la pull request, ciérrala usando el interfaz web de GitHub.
Merece la pena mencionar que si tu origen github utiliza https://, el unico paso para el que
necesitas una cuenta de GitHub es para cerrar la pull request.

6. Historico del Control de Versiones

El proyecto se ha movido a git.

El repositorio fuente de FreeBSD pasé de CVS a Subversion el 31 de Mayo de 2008. El primer
commit real de SVN es r179447. El repositorio fuente cambid de Subversion a Git el 23 de Diciembre
de 2020. El ultimo commit real de svn es r368820. El hash del primer commit real en git es
5ef5f51d2bef80b0ede9b10ad5b0e9440b60518c.

El repositorio doc/www de FreeBSD cambi6 de CVS a Subversion el 19 de Mayo de 2012. El primer
commit real de SVN es r38821. El repositorio de documentacion cambi6 de Subversion a Git el 8 de
Diciembre de 2020. El ultimo commit de SVN es r54737. El has del primer commit real de git es
3be01a475855e7511ad755b2defd2e0da5d58bbe.

El repositorio de ports de FreeBSD cambidé de CVS a Subversion el 14 de Julio de 2012. El primer
commit real de SVN es r300894. El repositorio de ports cambid de Subversion a Git el 6 de Abril de
2021. El ultimo commit de SVN es r569609. El hash del primer commit de git es
ed8d3eda309dd863fb66e04bccaa513eee255chf.

40

7. Configuracion, Convenciones y
Tradiciones

Hay una serie de cosas que hacer como nuevo desarrollador. La primera serie de pasos es
especifica solamente para los committers. Estos pasos deben ser realizados por un mentor para
aquellos que no son committers.

7.1. Para los Nuevos Committers

Aquellos a los que se les han concedido derechos de envio a los repositorios de FreeBSD deben
seguir estos pasos.

* {Obtén aprobacion de tu mentor para hacer commit de cada uno de estos cambios!

* Todos los commits de src van primero a FreeBSD-CURRENT antes de llevarse a FreeBSD-STABLE.
La rama FreeBSD-STABLE debe mantener la compatibilidad de ABI y API con versiones
anteriores de esa rama. No lleves cambios que rompan esta compatibilidad.

Pasos para los Nuevos Committers

1. Afiade una Entidad de Autor

doc/shared/authors.adoc - Afiade una entidad de autor. Los pasos posteriores dependen de
esta entidad, y saltarse este paso provocard que la construccion de doc/ falle. Esta es una
tarea relativamente sencilla, pero sigue siendo una buena primera tarea de prueba de las
habilidades de control de versiones.

2. Actualiza la Lista de Desarrolladores y Colaboradores

doc/shared/contrib-committers.adoc - Afiade una entrada, la cual aparecera en la seccion
"Developers" de la ection of the Lista de Colaboradores. Las entradas estan ordenadas por
apellido.

doc/shared/contrib-additional.adoc - Elimina la entrada. Las entradas estan ordenadas por
nombre.

3. Afiade un item a las Noticias

doc/website/data/en/news/news.toml - Afiade una entrada. Busca otras entradas que
anuncien nuevos committers y sigue el formato. Usa la fecha del correo de aprobacion del
commit bit.

4. Afiade una Clave PGP

Dag-Erling Smgrgrav <des@FreeBSD.org> ha escrito un shell script
(doc/documentation/tools/addkey.sh) para hacerlos mas facil. Lee el fichero README para
mads informacion.

Usa doc/documentation/tools/checkkey.sh para verificar que la clave cumple con el minimo

41

https://docs.freebsd.org/en/articles/contributors/#staff-committers
mailto:des@FreeBSD.org
https://cgit.freebsd.org/doc/plain/documentation/static/pgpkeys/README

42

10.

de las buenas practicas estandar.

Después de afiadir y comprobar la clave, afiade ambos ficheros actualizados al control de
codigo y luego haz commit. Las entradas en este fichero estan ordenadas por apellido.

Es muy importante tener una clave PGP/GnuPG actualizada en el
repositorio. Se podria requerir la clave para identificar a un committer.
o Por ejemplo, el Administradores de FreeBSD <admins@FreeBSD.org> podria
necesitarlo para recuperar una cuenta. Hay un llavero completo de
usuarios de FreeBSD.org disponible para descarga desde
https://docs.FreeBSD.org/pgpkeys/pgpkeys.txt.

Actualiza la informacion del Mentor y el Alumno

src/share/misc/committers-<repository>.dot - Afiade una entrada a la seccién de
committers actuales, donde repository es doc, ports, o src, dependiendo de los privilegios de
commit concedidos.

Afade una entrada para cada relaciéon mentor/alumno individual al final de la seccion.
Genera una Contrasefia de Kerberos

Lee Kerberos y contraseila web LDAP para el cluster de FreeBSD para generar o establecer
una cuenta de Kerberos para utilizarla con otros servicios de FreeBSD como la base de
datos de bugs (obtienes una cuenta en la base de datos como parte de ese paso).

Opcional: Activa la Cuenta de la Wiki

FreeBSD Wiki Account - Una cuenta en la wiki permite compartir proyectos e ideas.
Aquellos que todavia no tienen una cuenta pueden seguir las instrucciones en Wiki/About
page para obtener una. Contacta con wiki-admin@FreeBSD.org si necesitas ayuda con tu
cuenta Wiki.

Opcional: Actualiza la Informacion de la Wiki

Informacion en la Wiki - Después de obtener acceso a la wiki, algunas personas afiaden
entradas a las paginas Como Hemos Llegado Aqui, Nicks de IRC, Perros de FreeBSD, y o
Gatos de FreeBSD.

Opcional: Actualiza los Ports con Informacion Personal

ports/astro/xearth/files/freebsd.committers.markers y
src/usr.bin/calendar/calendars/calendar.freebsd - Algunas personas afiaden entradas para
ellos mismos a estos ficheros para mostrar donde viven o su fecha de cumpleafios.

Opcional: Evita Correos Duplicados

Los subscriptores de Mensajes de commit para todas la ramas del repositorio doc, Mensajes
de commit para todas las ramas del repositorio de ports o Mensajes de commit para todas
las ramas del repositorio src podrian querer darse de baja para evitar recibir copias
duplicadas de los mensajes de commit y de sus continuaciones.

mailto:admins@FreeBSD.org
https://docs.FreeBSD.org/pgpkeys/pgpkeys.txt
https://bugs.freebsd.org/bugzilla/
https://bugs.freebsd.org/bugzilla/
https://wiki.freebsd.org
https://wiki.freebsd.org/Wiki/About
https://wiki.freebsd.org/Wiki/About
mailto:wiki-admin@FreeBSD.org
https://wiki.freebsd.org/HowWeGotHere
https://wiki.freebsd.org/IRC/Nicknames
https://wiki.freebsd.org/Community/Dogs
https://wiki.freebsd.org/Community/Cats
https://lists.FreeBSD.org/subscription/dev-commits-doc-all
https://lists.FreeBSD.org/subscription/dev-commits-ports-all
https://lists.FreeBSD.org/subscription/dev-commits-ports-all
https://lists.FreeBSD.org/subscription/dev-commits-src-all
https://lists.FreeBSD.org/subscription/dev-commits-src-all

7.2. Para Todos

1. Preséntate ante los otros desarrolladores, de otro modo nadie tendrd ni idea de quién eres
0 en qué trabajas. La presentacion no tiene que ser una biografia completa, tan solo escribe
un parrafo o dos acerca de quién eres, en qué piensas trabajar como desarrollador de
FreeBSD, y quién sera tu mentor. Envia este correo a Lista de correo de desarrolladores de
FreeBSD y habrds terminado. Entra en freefall.FreeBSD.org y crea un fichero
/var/forward/usuario (donde usuario es tu nombre de usuario) que contenga la direccion
de correo donde quieres que se reenvien los correos dirigidos a
tunombredeusuario@FreeBSD.org. Esto incluye todos los mensajes de commit asi como
cualquier otro correo enviado a Lista de correo para 'committers' de FreeBSD y a Lista de
correo de desarrolladores de FreeBSD. Los buzones de correo realmente grandes que estan
en freefall podrian ser truncados sin previo aviso si se necesita liberar espacio, asi que
reenvialo o sadlvalo en otra parte.

o Si tu sistema de correo electronico usa SPF con reglas estrictas, deberias
excluir mx2.FreeBSD.org de las comprobaciones de SPF.

Debido a la severa carga que tratar con SPAM produce en los servidores centrales de correo
que hacen el procesamiento de las listas de correo, el servidor front-end hace algunas
comprobaciones bdasicas y eliminara algunos mensajes basandose en estas
comprobaciones. En este momento solo se comprueba la que la informacién de DNS para el
host que se conecta es la adecuada, pero esto podria cambiar. Algunas personas culpan a
estas comprobaciones de bloquear correo valido. Para deshabilitar estas comprobaciones
para tu correo, crea un fichero llamado ~/.spam_lover en freefall.FreeBSD.org.

Aquellos que sean desarrolladores pero no committers no estaran
o suscritos a las listas de committers o desarrolladores. Las suscripciones se
derivan de los permisos de acceso.

7.2.1. Configuracion de acceso SMTP
Para aquellos que deseen enviar mensajes de correo electronico a través de la infraestructura de

FreeBSD.org, sigan las siguientes instrucciones:

1. Apunta tu cliente de correo a smtp.FreeBSD.org:587. Activa STATTLS. Asegurate de que tu
direccién From: estad establecida a tunombredeusuario@FreeBSD.org. Para la autenticacidon
puedes usar tu nombre de usuario de Kerberos y tu contrasefia (lee Kerberos y contrasefia
web LDAP para el cluster de FreeBSD). Se prefiere el tunombredeusuario/mail principal, ya
que solo se usa para validar recursos de correo

0 No incluyas FreeBSD.org cuando introduzcas tu nombre de usuario

2. Notas adicionales

43

> SOlo se aceptara correo desde tunombredeusuario@FreeBSD.org. Si estds
autenticado como un usuario, no se te permite enviar correo como
otro.

o o Se afiadirda una cabecera con el nombre de wusuario SASL:
(Authenticated sender: username).

- La maquina tiene varios limites de velocidad para cortar los intentos
de fuerza bruta.

7.2.1.1. Uso de un MTA local para reenviar correos electronicos al servicio SMTP de
FreeBSD.org

También es posible utilizar un MTA local para reenviar emails enviados localmente a los servidores
SMTP de FreeBSD.org.

Ejemplo 1. Usando Postfix

Para decirle a una instancia local de Postfix que se deberia reenviar a los servidores
FreeBSD.org cualquier cosa que venga de tunombredeusuario@FreeBSD.org, afiade esto a tu
main.cf:

sender _dependent_relayhost_maps = hash:/usr/local/etc/postfix/relayhost_maps
smtp_sasl_auth_enable = yes smtp_sasl_security_options = noanonymous
smtp_sasl_password_maps = hash:/usr/local/etc/postfix/sasl_passwd smtp_use_tls =
yes

Crea /usr/local/etc/postfix/relayhost_maps con el siguiente contenido:
tunombredeusuario@FreeBSD.org [smtp.freebsd.org]:587

Crea /usr/local/etc/postfix/sasl_passwd con el siguiente contenido:
[smtp.freebsd.org]:587 tunombredeusuario:tucontrasefia

Si otras personas utilizan el servidor de correo electronico, es posible que quieras evitar que
envien correos electronicos desde tu direccion. Para lograr esto, agrega esto a tu main.cf:

smtpd_sender_login_maps = hash:/usr/local/etc/postfix/sender_login_maps
smtpd_sender_restrictions = reject_known_sender_login_mismatch

Crea /usr/local/etc/postfix/sender_login_maps con el siguiente contenido:

tunombredeusuario@FreeBSD.org tunombredeusuariolocal

44

Donde tunombredeusuariolocal es el nombre de usuario SASL utilizado para conectar a la
instancia local de Postfix

Ejemplo 2. Usando OpenSMTPD

Para decirle a una instancia local de OpenSMTPD que se deberia reenviar a los sevidores
FreeBSD.org cualquier cosa que venga de tunombredeusuario@FreeBSD.org, afiade esto a tu
smtpd.conf:

action "freebsd" relay host smtp+tls://freebsd@smtp.freebsd.org:587 auth <secrets>
match from any auth yourlocalusername mail-from "_yourusername_@freebsd.org" for
any action "freebsd"

Donde tunombredeusuariolocal es el nombre de usuario SASL utilizado para conectar a la
instancia local de OpenSMTPD.

Crea /usr/local/etc/mail/secrets con el siguiente contenido:

freebsd tunombredeusuario:tucontraseia

Ejemplo 3. Usando Exim

Para decirle a una instancia local de Exim que se deberia reenviar a los sevidores
FreeBSD.ORG cualquier cosa que venga de example@FreeBSD.org afiade esto a tu configuration
de Exim:

Routers section: (at the top of the list):
freebsd_send:

driver = manualroute

domains = !+local_domains

transport = freebsd_smtp

route_data = ${lookup {${1lc:$sender_address}} 1lsearch
{/usr/local/etc/exim/freebsd_send}}

Transport Section:
freebsd_smtp:
driver = smtp

tls_certificate=<local certificate>

tls_privatekey=<local certificate private key>

tls_require_ciphers =
EECDH+ECDSA+AESGCM: EECDH+aRSA+AESGCM: EECDH+ECDSA+SHA384 : EECDH+ECDSA+SHA256: EECDH+a
RSA+SHA384 : EECDH+aRSA+SHA256 : EECDH+AESGCM: EECDH: EDH+AESGCM: EDH+aRSA:HIGH: 'MEDIUM: !
LOW: 'aNULL: 'eNULL:'LOW: 'RC4: !MD5: 'EXP: IPSK:!SRP: IDSS

dkim_domain = <local DKIM domain>

dkim_selector = <local DKIM selector>

dkim_private_key= <local DKIM private key>

45

dnssec_request_domains = *
hosts_require_auth = smtp.freebsd.org

Authenticators:
fixed_plain:
driver = plaintext
public_name = PLAIN
client_send = "example/mail’examplePassword

Crea /usr/local/etc/exim/freebsd_send con el siguiente contenido:

example@freebsd.org:smtp.freebsd.org::587

7.3. Mentores

Todos los nuevos desarrolladores tienen un mentor asignado durante los primeros meses. Un
mentor es responsable de ensefiar a los aprendices las reglas y convenciones del proyecto y de
guiar sus primeros pasos en la comunidad de desarrolladores. El mentor también es personalmente
responsable de las acciones de los aprendices durante este periodo inicial.

Para los committers: no envies nada sin obtener primero la aprobacion del mentor. Documenta esa
aprobacion con una linea Approved by: en el mensaje de commit.

Cuando el mentor decide que un aprendiz ha aprendido las reglas y estd listo para hacer envios por
su cuenta, el mentor lo anuncia con un commit en mentors. Este archivo estd en la rama huérfana
admin de cada repositorio. Se puede encontrar informacién detallada sobre como acceder a estas
ramas en rama "admin".

8. Revision previa al commit

La revision de codigo es una forma de incrementar la calidad del software. Las siguientes guias
aplican a los commits a la rama main(-CURREN) del repositorio src. Otras ramas y los arboles ports y
docs tienen sus propias politicas, pero estas directrices aplican generalmente a commits que
necesitan revision:

» Todos los cambios no triviales deberian ser revisados antes de hacer commit en el repositorio.

* Las revisiones se pueden realizar por email, en Bugzilla, en Phabricator, o por otro mecanismo.
Cuando sea posible, las revisiones deberian ser publicas.

* El desarrollador responsable de un cambio de cédigo también es responsable de hacer todos los
cambios relacionados con la revision.

* Larevision de cddigo puede ser un proceso iterativo, que continua hasta que el parche estd listo
para ser comprometido. Especificamente, una vez que se envia un parche para su revision,
debes recibir un "looks good" explicito antes de hacer commit. Siempre que sea explicito, esto
puede tomar cualquier forma que tenga sentido para el método de revision.

46

* Los timeouts no sustituyen una revision.

A veces las revisiones de los codigos tardan mas de lo que se espera, especialmente para las
funciones mas grandes. Las formas aceptadas de acelerar los tiempos de revision de tus parches
son:

» Revisa los parches de otras personas. Si tu ayudas, todo el mundo estard mas dispuesto a hacer
lo mismo por ti; la buena voluntad es nuestra moneda.

* Avisa del parche. Si es urgente, proporciona razones por las que es importante que este parche
sea incluido y avisa cada dos dias. Si no es urgente, la cortesia habitual es llamar la atencion
sobre el parche una vez a la semana. Recuerda que estds pidiendo tiempo valioso de otro
desarrollador profesional.

* Pide ayuda en las listas de correo, IRC, etc. Otros podrian ser capaces de ayudarte directamente,
0 de sugerir un revisor.

* Parte tu parche en varios parches mas pequefios que se apliquen uno sobre otro. Cuanto mas
pequeiio sea tu parche, mds alta serd la probabilidad de que alguien le eche un vistazo.

Cuando hagas cambios grandes, es util tener en cuenta esto desde el comienzo ya que romper
cambios en trozos mas pequefios es normalmente dificil al hacerlo mads tarde.

Los desarrolladores deben participar en las revisiones de cédigo como revisores y revisados. Si
alguien tiene la amabilidad de revisar tu cddigo, deberias devolverle el favor a otra persona. Ten en
cuenta que aunque cualquiera es bienvenido a revisar y dar su opinion sobre un parche, s6lo un
experto en la materia puede aprobar un cambio. Normalmente serd un especialista que trabaje con
el codigo en cuestion de forma regular.

En algunos casos, es posible que no se disponga de un experto en la materia. En esos casos, basta
con un examen por parte de un desarrollador experimentado cuando se combina con las pruebas
apropiadas.

9. Mensajes de Commit

Esta seccion contiene algunas sugerencias y tradiciones sobre cdmo se formatean los mensajes de
commit.

9.1. ¢Por qué son importantes los mensajes de
commit?

Cuando haces commit en Git, Subversion, o cualquier otro sistema de control de versiones (VCS), se
te pide un texto que describa el cambio —un mensaje de commit. ;Como de importante es este
mensaje? ¢Deberias dedicar un esfuerzo significativo escribiéndolo? ¢Realmente importa si
escribes simplemente "arregla un bug"?

La mayoria de los proyectos tienen mas de un desarrollador y duran un tiempo determinado. Los
mensajes de commit son un método muy importante de comunicaciéon con otros desarrolladores,
en el presente y para el futuro.

47

FreeBSD tiene cientos de desarrolladores activos y cientos de miles de commits a lo largo de
décadas de historia. Durante ese tiempo la comunidad de desarrolladores ha aprendido como de
valiosos son los buenos mensajes de commit; a veces se ha tenido que aprender a la fuerza.

Los mensajes de commit sirven al menos tres propositos:
* Comunicdndote con otros desarrolladores

Los commits en FreeBSD generan emails en varias listas de correo. Estos incluyen el mensaje de
commit junto con una copia del propio parche. Los mensajes de commit también se visualizan a
través de comandos como git log. Esto sirve para que otros desarrolladores sean conscientes de
los cambios que se estan produciendo; que otro desarrollador podria querer probar el cambio,
podria tener un interés en el asunto en cuestion y querra revisarlo en mas detalle, o que podria
tener sus propios proyectos en curso que se beneficiarian de una posible interaccion entre
ambos.

* Haciendo que los Cambios sean Descubribles

En un proyecto grande con mucha historia podria ser dificil encontrar cambios de interés
cuando se esta investigando un problema o un cambio de comportamiento. Los mensajes de
commit largos y detallados permiten buscar cambios que podrian ser relevantes. Por ejemplo,
git log --since lyear --grep 'USB timeout'.

* Proporcionando documentacion historica

Los mensajes de commit se utilizan para documentar los cambios para los futuros
desarrolladores, quizas afios o décadas mads tardes. Este desarrollador futuro podrias ser tu, el
autor original. Un cambio que hoy podria resultar obvio, podria no serlo mucho tiempo
después.

El comando git blame anota cada linea de un fichero fuente con el cambio (hash y linea de titulo)
que lo incorporo.

Habiendo establecido su importancia, aqui hay algunos ejemplos de buenos mensajes de commit en
FreeBSD:

9.2. Comienza con una linea para el titulo

Los mensajes de commit deberian empezar con una sola linea para el titulo que resume
brevemente el cambio. El titulo, por si mismo, deberia permitir al lector determinar de forma
rapida si el cambio tiene algun interés o no.

9.3. Mantén las lineas de titulo cortas

La linea de titulo deberia ser lo mas corta posible a la vez que mantiene la informacion requerida.
Esto hace que navegar el log de Git sea mas eficiente, y también que git log --oneline pueda mostrar
el hash corto y el titulo en una linea de 80 columnas. Una buena regla basica es mantenerse por
debajo de 63 caracteres, e intentar hacerlo en 50 o menos si es posible.

48

9.4. Anade al titulo un prefijo para el componente si
aplica

Si el cambio esta relacionado con un componente especifico, se puede afiadir ala linea del titulo un
prefijo con el nombre del componente y dos puntos (:).

v foo: Add -k option to keep temporary data

Incluye el prefijo en el limite de 63 caracteres sugerido arriba, de forma que git log --oneline evite
partir la linea.

9.5. Usa mayusculas para la primera letra del titulo

Utiliza mayuscula en la primera letra del titulo. El prefijo, si lo hay, no utiliza mayusculas a menos
que sea necesario (por ejemplo, USB: va en mayusculas).

9.6. No termines el titulo con punto

No termines en punto o con cualquier otro signo de puntuacion. En este aspecto la linea de titulo es
como el titular de un periddico.

9.7. Separa el titulo y el cuerpo con una linea en
blanco

Separa el cuerpo del titulo con una linea en blanco.
Algunos commits triviales no necesitan cuerpo y tendran solo un titulo.

v 1s: Fix typo in usage text

9.8. Limita los mensajes a 72 columnas

git logygit format-patch tabulan el mensaje de commit utilizando cuatro espacios. Cortar en 72
columnas proporciona un margen en el borde derecho. Limitar los mensajes a 72 caracteres
también mantiene el mensaje de commit en parches formateados bajo el limite de longitud de linea
de email de 78 caracteres fijado en el RFC 2822. Este limite funciona bien con un buen numero de
herramientas que podrian mostrar mensajes de commit; el cortado de lineas podria ser
inconsistente con longitudes de linea mas largas.

9.9. Usa el modo presente en imperativo

Esto favorece las lineas de titulo cortas y proporciona consistencia, incluyendo la generacion
automatica de mensajes de commit (ejemplo, como los generados por git revert). Esto es importante
cuando se lee una lista de titulos de commit. Piensa en los titulos como las partes finales de la frase
"cuando se aplica, este cambio...".

49

v foo: Implement the -k (keep) option

0 foo: Implemented the -k option

0 This change implements the -k option in foo
0 -k option added

9.10. Céntrate en el qué y el por qué, no en el como

Explica qué hace el cambio y por qué se ha hecho, en lugar de c6mo lo hace.

No asumas que el lector esta familiarizado con el asunto. Explica los antecedentes y la motivacion
para el cambio. Incluye datos de pruebas si los tienes.

Si hay limitaciones o aspectos incompletos del cambio, describelos en el mensaje de commuit.

9.11. Considera si hay partes del mensaje de commit
que podrian ser en realidad comentarios de codigo

A veces mientras escribes un mensaje de commit puedes ver que estas escribiendo un par de frases
explicando algun aspecto confuso del cambio. Cuando esto suceda considera si seria valioso tener
esa explicacion también en el codigo en forma de comentario.

9.12. Escribe mensajes de commit para tu yo del futuro

Mientras escribes un mensaje de commit para un cambio tienes todo el contexto en la cabeza - qué
motivé el cambio, aproximaciones alternativas que se consideraron y fueron rechazadas,
limitaciones del cambio y demds. Imaginate a ti mismo revisitando el cambio en uno o dos afios y
escribe el mensaje de commit de forma que proporcione el contexto necesario.

9.13. Los mensajes de commit deberian ser
autocontenidos

Puedes incluir referencias a mensajes de la lista de correo, resultados de pruebas en sitios web, o
enlaces a revisiones de codigo. Sin embargo, los mensajes de cddigo deberian contener toda la
informacion relevante en caso de que estas referencias ya no estén disponibles en el futuro.

De forma similar, un commit podria referenciar un commit anterior, por ejemplo en el caso de un
arreglo y una marcha atrds. Ademas del identificador del commit (revision o hash), incluye la linea
de titulo del commit referenciado (u otra referencia breve que sirva). Con cada migracion de VCS
(de CVS a Subversion a Git) los identificadores de revision de los sistemas previos podrian ser
dificiles de seguir.

9.14. Incluye los metadatos apropiados al pie

Ademas de incluir un mensaje informativo con cada envio, es posible que se necesite informacion
adicional.

50

Esta informacién consta de una o mas lineas que contienen la palabra o frase clave, dos puntos,
pestafias para formatear y, a continuacion, la informacion adicional.

Las palabras o frases clave son:

PR: El informe de error (si lo hay) que se ve afectado (tipicamente, cerrandolo) por
este commit. Se pueden especificar varios PRs en una linea, separados por
comas o espacios.

Reported by: El nombre y direccion de correo de la persona que reporté el problema: para
desarrolladores solo el nombre de usuario en el cluster de FreeBSD.
Tipicamente utilizando cuando no hay PR, por ejemplo si el problema fue
reportado en una lista de correo.

Submitted by: Esto es obsoleto con git; los parches enviados deberian tener el autor
(deprecated) establecido usando git commit --author con un nombre completo y una
direccion de email valida.

Reviewed by: El nombre y direccion de correo de la persona o personas que revisaron el
cambio; para los desarrolladores tan solo el nombre de usuario en el cluster
de FreeBSD. Si se envio un parche a la lista de correo para ser revisado y la
revision fue favorable, entonces simplemente incluye el nombre de la lista. Si
el revisor no es un miembro del proyecto, proporciona el nombre, email y si es
el caso de ports un rol externo como el de mantenedor:

Revisado por un desarrollador:
Reviewed by: username
Revisado por un mantenedor de ports que no es un desarrollador:

Reviewed by: Full Name <valid@email> (maintainer)
Tested by: El nombre y direccion de correo de la persona o personas que probaron el

cambio; para desarrolladores, s6lo el nombre de usuario en el cluster de
FreeBSD.

31

Approved by:

Obtained from:

Fixes:

MFC after:

MFC to:

MFH:

Relnotes:

Security:

32

El nombre y la direccion de correo de la persona o personas que aprobaron el
cambio; para desarrolladores el nombre de usuario en el cluster de FreeBSD.

Hay varios casos donde se suele necesitar aprobacion:

* cuando un committer todavia esta bajo tutorizacion

* commits en un are del arbol cubierto bajo el fichero LOCKS (srv)

durante el ciclo de liberacion

* hacer commit a un repo en el que no tienes commit bit (por ejemplo un
committer de src haciendo commit en docs)

* hacer commit a un port que mantenga otra persona
Mientras estés aprendiendo, obtén aprobacion de tu mentor antes de hacer

commit. Introduce el nombre de usuario del mentor en este cambio y haz
referencia a que es un mentor:

Approved by: username-of-mentor (mentor)

Si los commits los aprueba un grupo incluye el nombre del grupo seguido del
nombre de usuario entre paréntesis de la persona que aprobd. Por ejemplo:

Approved by: re (username)

El nombre el proyecto (si aplica) del que se obtuvo el cddigo. No uses esta linea
para el nombre de una persona individual.

El hash corto de Git y la linea de titulo del commit que se arregla con este
cambio tal y como lo devuelve git log -n 1 --oneline GIT-COMMIT-HASH.

Para recibir un correo con un recordatorio para hacer MFC posteriormente,
especifica el numero de dias, semanas o meses después de los cuales se planea
hacer el MFC.

Si el commit se debe mergear a un subconjunto de ramas estables, especifica
los nombres de las ramas.

Si el commit se debe mergear a una rama trimestral de ports, especifica la
rama trimestral. Por ejemplo 2021Q2.

Si el cambio es candidato para inclusion en las notas de la version para la
siguiente version de la rama, establece el campo a yes.

Si el cambio esta relacionado con una vulnerabilidad de seguridad o riesgo de
seguridad, incluye una o mas referencias o una descripcion del problema. Si es
posible incluye una URL de VuXML o un ID de CVE.

Event:

Sponsored by:

Pull Request:

Co-authored-by:

Signed-off-by:

Differential
Revision:

La descripcion del evento donde se hizo este commit. Si es un evento
recurrente, afiade el afio o incluso el mes. Por ejemplo, podria ser FooBSDcon
2019. La idea de esta linea es darle reconocimiento a las conferencias,
reuniones y otro tipo de encuentros y mostrar que son utiles. Por favor no
utilices la linea Sponsored by: para esto ya que se utiliza para organizaciones
que son patrocinadores de ciertas caracteristicas o de desarrolladores que
trabajan en ellas.

Organizaciones que patrocinan este cambio, si aplica. Separa varias
organizaciones con comas. Si s6lo se patrocind una parte del trabajo, o
distintos autores patrocinaron a distintos niveles, por favor, da el crédito
apropiado entre paréntesis después de cada nombre de los patrocinadores.
Por ejemplo, Example.com (alice, refactorizacion de cdédigo), Wormulon
(bob), Momcorp (cindy) muestra que Alice fue patrocinada por Example.com
para hacer refactorizacién de codigo, mientras que Wormulon patrocing el
trabajo de Bob y Momcorp patrocing el trabajo de Cindy. Otros autores o no
fueron patrocinados o escogieron no listar dicho patrocinio.

Este cambio fue enviado como una pull request o merge request contra uno de
los repositorios Git de solo lectura de FreeBSD. Deberia incluir la URL
completa de la pull request, ya que normalmente sirve para hacer la revision
del codigo. Por ejemplo: https://github.com/freebsd/freebsd-src/pull/745

The name and email address of an additional author of the commit. GitHub
has a detailed description of the Co-authored-by trailer at
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/
creating-and-editing-commits/creating-a-commit-with-multiple-authors.

EL ID certifica que cumple con https://developercertificate.org/

La URL completa de la revision de Phabricator. Esta linea debe ser la ultima
linea. Por ejemplo: https://reviews.freebsd.org/D1708.

Ejemplo 4. Registro de compromiso para un compromiso basado en un PR

El commit se basa en un parche en un PR enviado por John Smith. El cambio "PR" del mensaje
de commit esta relleno.

PR: 12345

El committer establece el autor del parche con git commit --author "John Smith
<John.Smith@example.com>".

Ejemplo 5. Confirmar registro para una confirmacion que necesita revision

Se esta cambiando el sistema de memoria virtual. Después de publicar los parches en la lista
de correo correspondiente (en este caso, freebsd-arch) y los cambios han sido aprobados.

33

https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://developercertificate.org/
https://reviews.freebsd.org/D1708
https://reviews.freebsd.org/D1708
https://reviews.freebsd.org/D1708
mailto:John.Smith@example.com

Reviewed by: -arch

Ejemplo 6. Registro de compromiso para un compromiso que necesita aprobacion

HAcer un commit de un port, después de trabajar con el MAINTAINER, quien dio el visto bueno
para hacer el commit.

Approved by: abc (maintainer)

Donde abc es el nombre de la cuenta de la persona que lo aproba.

Ejemplo 7. Commit Log para una confirmacion que trae codigo desde OpenBSD

Hacer commit de codigo basado en el trabajo realizado en el proyecto OpenBSD.

Obtained from: OpenBSD

Ejemplo 8. Commit Log para un cambio en FreeBSD-CURRENT con un compromiso planificado en FreeBSD-
STABLE para seguir en una fecha posterior.

Haciendo commit de un codigo que se fusionard de FreeBSD-CURRENT en la rama FreeBSD-
STABLE después de dos semanas.

MFC after: 2 weeks

Donde 2 es el numero de dias, semanas, o meses después de los cuales se planea hacer un MFC.
La opcion weeks podria ser day, days, week, weeks, month, months.

A menudo es necesario combinarlos.

Considera la situacion en la que un usuario ha enviado un PR que contiene codigo del proyecto
NetBSD. Mirando el PR, el desarrollador ve que no es un drea del arbol en la que trabaja
habitualmente de forma que se solicita que el cambio sea revisado por la lista de correo arch. Como
el cambio es complejo, el desarrollador opta por hacer MFC después de un mes para permitir que se

54

hagan las pruebas adecuadas.
La informacion adicional para incluir en la confirmacion seria algo asi como

Ejemplo 9. Ejemplo de Registro de Commit Combinado

PR: 54321

Reviewed by: -arch
Obtained from: NetBSD
MFC after: 1 month
Relnotes: vyes

10. Licencia preferida para los nuevos
archivos

La politica completa de licencias del Proyecto FreeBSD se puede encontrar en
https://www.FreeBSD.org/internal/software-license. El resto de esta seccion esta pensada para
ponerte en funcionamiento. Como regla, cuando tengas dudas, pregunta. Es mucho mas facil dar
consejo que arreglar el arbol de fuentes.

El Proyecto FreeBSD sugiere y usa este texto como el esquema de licencia preferido:

/*-
SPDX-License-Identifier: BSD-2-Clause

Copyright (c) [year] [your name]

*
*
*
*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this 1list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*

*

*

*

*

*

*

*

*

*

*

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

55

https://www.FreeBSD.org/internal/software-license/

* SUCH DAMAGE.

*

* [id for your version control system, if any]
*/

El proyecto FreeBSD desaconseja rotundamente la denominada "cldusula publicitaria” en el nuevo
codigo. Debido a la gran cantidad de colaboradores al proyecto FreeBSD, cumplir con esta clausula
para muchos proveedores comerciales se ha vuelto dificil. Si tienes c6digo en el arbol con la
clausula publicitaria, considera eliminarlo. De hecho, considera usar la licencia anterior para tu
codigo.

El proyecto FreeBSD desaconseja licencias completamente nuevas y variaciones de las licencias
estdndar. Las nuevas licencias requieren la aprobacion del core@FreeBSD.org para que se afiadan
al repositorio src. Cuantas mas licencias diferentes se utilicen en el arbol, mds problemas
ocasionard a quienes deseen utilizar este codigo, por lo general debido a las consecuencias no
deseadas de una licencia mal redactada.

La politica del proyecto dicta que el cédigo de algunas licencias que no sean BSD debe colocarse
solo en secciones especificas del repositorio y, en algunos casos, la compilacion debe ser
condicional o incluso deshabilitada de forma predeterminada. Por ejemplo, el nucleo GENERIC
debe compilarse unicamente bajo licencias idénticas o sustancialmente similares a la licencia BSD.
El software con licencia GPL, APSL, CDDL, etc., no debe compilarse en GENERIC.

Se recuerda a los desarrolladores que en el codigo abierto, conseguir "abrir" correctamente es tan
importante como conseguir una "fuente" correcta, ya que el manejo inadecuado de la propiedad
intelectual tiene graves consecuencias. Cualquier pregunta o inquietud debe comunicarse
inmediatamente al Core Team.

11. Seguimiento de las licencias concedidas
al proyecto FreeBSD

Existen varias piezas de software y datos en los repositorios para los cuales se ha concedido al
proyecto FreeBSD una licencia especial de uso. Un caso de ejemplo es la fuente Terminus para
utilizar con vt(4). Aqui el autor Dimitar Zhekov nos ha permitido utilizar la fuente "Terminus BSD
Console" bajo una licencia BSD de dos clausulas en lugar de las licencia regular Open Font License
que utiliza é normalmente.

Conviene claramente mantener un registro de dichas concesiones de licencias. Para tal fin,
core@FreeBSD.org ha decidido mantener un archivo de ellas. Cuando se le otorga al proyecto
FreeBSD una licencia especial, obligamos a que se notifique a core@FreeBSD.org. A cualquier
desarrollador involucrado en acordar dichas concesiones de licencia, por favor, envia los detalles a
core@FreeBSD.org incluyendo:

* Datos de contacto de personas u organizaciones que otorgan la licencia especial.

* Qué archivos, directorios, etc. de los repositorios estan cubiertos por la concesion de licencia,
incluidos los numeros de revision donde se comprometid cualquier material con licencia
especial.

36

mailto:core@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org

* La fecha en que la licencia entra en vigor. A menos que se acuerde lo contrario, esta serd la
fecha en que la licencia fue emitida por los autores del software en cuestion.

El texto de la licencia.

* Una nota de cualquier restriccion, limitacidn o excepcidn que se aplique especificamente al uso
de FreeBSD del material licenciado.

* Cualquier otra informacion relevante.

Una vez que core@FreeBSD.org esta satisfecho con todos los detalles necesarios que se han
recopilado y que estos son correctos, el secretario enviard un acuse de recibo firmado con PGP que
incluye los detalles de la licencia. Este recibo se almacenara de forma persistente y servira como
registro permanente de la concesion de la licencia.

El archivo de licencias sdlo deberia contener detalles de las concesiones de licencias; no es lugar
para discusiones acerca de licencias en si u otros asuntos. El acceso a los datos del fichero de
licencias estara disponible bajo peticion al core@FreeBSD.org.

12. Etiquetas SPDX en el arbol

El proyecto utiliza etiquetas SPDX en nuestra base de fuentes. En este momento, las etiquetas estan
indentadas para ayudar a las herramientas automadticas a reconstruir los requisitos de las licencias
mecanicamente. Todas las etiquetas SPDX-License-Identifier en el arbol deberian considerarse
informativas. Todos los ficheros en el arbol de fuentes de FreeBSD con estas etiquetas también
tienen una copia de la licencia de gobierna el uso de dicho fichero. En el caso de alguna
discrepancia, la licencia literal es la que domina. El proyecto intenta seguir la SPDX Specification,
Version 2.2. Se puede ver como crear ficheros fuente y expresiones algebraicas validas en Appendix
IV y Appendix V. El proyecto extrae identificadores de la lista de identificadores cortos de licencias
de SPDX. El proyecto solo utiliza la etiqueta SPDX-License-Identifier.

A fecha de Marzo de 2021, se han marcado aproximadamente 25,000 de los 90,000 ficheros en el
arbol.

13. Relaciones con los desarrolladores

Cuando trabajes directamente en tu propio codigo o en un codigo que ya esta bien establecido como
tu responsabilidad, entonces probablemente haya poca necesidad de verificar con otros committers
antes de hacer un commit. Cuandoo trabajes en un arreglo para un error en un area del sistema
que esta claramente huérfana (y hay algunas areas de este tipo, para nuestra vergiienza), se aplica
lo mismo. Cuando modifiques partes del sistema que se mantienen, formal o informalmente,
considera solicitar una revision tal como lo haria un desarrollador antes de convertirse en un
committer. Para ports, contacta con el MAINTAINER que aparece listado en el Makefile.

Para determinar si se mantiene un drea del arbol, consulta el archivo MAINTAINERS en la raiz del
arbol. Si no aparece nadie, escanea el historial de revisiones para ver quién ha realizado cambios
en el pasado. Para listar los nombres y direcciones de correo de todos los autores de commits de un
fichero concreto en los dos ultimos afios y el numero de commits de cada autor, ordenado por
numero descendente de commits, usa:

57

mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
https://spdx.dev
https://spdx.github.io/spdx-spec/
https://spdx.github.io/spdx-spec/
https://spdx.github.io/spdx-spec/appendix-IV-SPDX-license-expressions/
https://spdx.github.io/spdx-spec/appendix-IV-SPDX-license-expressions/
https://spdx.github.io/spdx-spec/appendix-V-using-SPDX-short-identifiers-in-source-files/
https://spdx.org/licenses/

% git -C /path/to/repo shortlog -sne --since="2 years" -- relative/path/to/file

Si las consultas quedan sin respuesta o el committer de otro modo indica una falta de interés en el
area afectada, continua adelante y realiza el commit.

o Evita enviar correos electronicos privados a los mantenedores. Otras personas
podrian estar interesadas en la conversacion, no sélo en el resultado final.

Si hay alguna duda sobre un commit por cualquier motivo, hazlo revisar antes de realizar el
commit. Es mejor que reciba criticas en ese mismo momento que cuando es parte del repositorio. Si
un commit da lugar a que surja una controversia, puede ser aconsejable considerar deshacer el
cambio hasta que se resuelva el asunto. Recuerda, con un sistema de control de versiones siempre
podemos volver a cambiarlo.

No impugnes las intenciones de los demas. Si ven una solucién diferente a un problema, o incluso
un problema diferente, probablemente no sea porque sean estupidos, porque tienen una
paternidad cuestionable o porque estan tratando de destruir el trabajo duro, la imagen personal o
FreeBSD, sino basicamente porque tienen una perspectiva diferente del mundo. Diferente es bueno.

Discrepa de forma honesta. Argumenta tu posicion desde sus méritos, sé honesto acerca de
cualquier deficiencia que puedas tener y mantente abierto a ver su solucidn, o incluso su vision del
problema, con una mente abierta.

Acepta la correccion. Todos cometemos errores. Cuando hayas cometido un error, disculpate y
sigue con tu vida. No te castigues a ti mismo, y ciertamente no castigues a otros por tu error. No
pierdas el tiempo en vergiienza o recriminacion, simplemente soluciona el problema y sigue
adelante.

Pide ayuda. Busca (y proporciona) revisiones de pares. Una de las formas en que se supone que el
software de codigo abierto sobresale es en la cantidad de ojos que se le aplican; esto no se aplica si
nadie revisa el codigo.

14. Si tienes dudas ...

Cuando no estés seguro de algo, ya sea un problema técnico o una convencion del proyecto,
asegurate de preguntar. Si te quedas en silencio, nunca progresaras.

Si se relaciona con un problema técnico, pregunta en las listas de correo publicas. Evita la tentacion
de enviar un correo electrénico a la persona que conoce la respuesta. De esta manera, todos podran
aprender de la pregunta y la respuesta.

Para preguntas administrativas o especificas del proyecto, pregunta, en orden:

e Tu mentor o ex mentor.
* Un cometer experimentado en IRC, correo electronico, etc.

* Cualquier equipo con "sombrero", ya que pueden darte una respuesta definitiva.

38

 Si aun asi no estas seguro, pregunta en Lista de correo de desarrolladores de FreeBSD.

Una vez que se responda tu pregunta, si nadie te indic6 la documentacion que detalla la respuesta a
tu pregunta, documenta, ya que otros tendran la misma pregunta.

15. Bugzilla

El proyecto FreeBSD utiliza Bugzilla para rastrear errores y solicitudes de cambio. Si haces un
commit de un arreglo o una sugerencia que esta en la base de datos de PR asegurate de cerrarlo.
También se considera bueno si te tomas tiempo para cerrar cualquier PR asociado con tus commits,
si corresponde.

Committers sin una cuenta FreeBSD.org en Bugzilla pueden fusionar la antigua cuenta con su cuenta
FreeBSD.org siguiendo los siguientes pasos:

1. Inicie sesién con su cuenta anterior.

2. Abre un nuevo bug. Escoge Services como Product y Bug Tracker como Component. En la
descripcion del bug lista las cuentas que quieres fusionar.

3. Haz login utilizando la cuenta FreeBSD.org y haz un comentario en el bug recién abierto
para confirmar la propiedad. Visita Kerberos y contrasefia web LDAP para el cluster de
FreeBSD para mas detalles sobre como generar o establecer una contrasefia para tu cuenta
FreeBSD.org.

4. Sihay mas de dos cuentas para fusionar, publique comentarios de cada una de ellas.

Puedes encontrar mas acerca de Bugzilla en:

* FreeBSD Problem Report Handling Guidelines

* https://www.FreeBSD.org/support

16. Phabricator

El Proyecto FreeBSD utiliza Phabricator para las solicitudes de revision de codigo. Visita la pagina
de la wiki de Phabricator para mas detalles.

Committers sin una cuenta FreeBSD.org en Phabricator pueden fusionar la antigua cuenta con su
cuenta FreeBSD.org siguiendo los siguientes pasos:

1. Cambia tu cuenta de correo de Phabricator a tu direccion FreeBSD.org.

2. Abre un nuevo informe de error en nuestra base de datos usando tu cuenta FreeBSD.org,
visita Bugzilla para mas informacion. Escoge Services como Product y Code Review como
Component. En la descripcion del bug solicita que se renombre tu cuenta de Phabricator y
proporciona un enlace a tu usuario de Phabricator. Por ejemplo,
https://reviews.freebsd.org/p/bob_example.com/

39

https://docs.freebsd.org/es/articles/pr-guidelines/
https://www.FreeBSD.org/support/
https://reviews.freebsd.org
https://wiki.freebsd.org/Phabricator
https://wiki.freebsd.org/Phabricator
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/

o Las cuentas de Phabricator no se pueden fusionar, por favor no abras una cuenta
nueva.

17. Quien es Quien

Ademads de los meisters del repositorio, hay otros miembros y equipos del proyecto FreeBSD a los
que probablemente conocerd en su rol de committer. Brevemente, y de ninguna manera todo
incluido, estos son:

Grupo de Ingenieria de Documentacion <doceng@FreeBSD.org>

doceng es el grupo responsable de la infraestructura de construcciéon de documentacion,
aprobar nuevos committers de documentacion, y asegurar que el sitio web de FreeBSD y la
documentacion en el sitio FTP estdn actualizados respecto del arbol de Subversion. No es un
organo de resolucion de conflictos. La mayoria de las discusiones relacionadas con
documentacion tienen lugar en Lista de correo del proyecto de documentacion de FreeBSD. Se
pueden encontrar mas detalles acerca del equipo de doceng en su charter. Los committers
interesados en contribuir a la documentacion se deberian familiarizar con el Documentation
Project Primer.

Dave Cottlehuber <dch@FreeBSD.org>, Marc Fonvieille <blackend@FreeBSD.org>, Xin Li
<delphij@FreeBSD.org>, Ed Maste <emaste@FreeBSD.org>, Colin Percival <cperciva@FreeBSD.org>,
Muhammad Moinur Rahman <bofh@FreeBSD.org>, Lexi Winter <ivy@FreeBSD.org>

Estos son los miembros del equipo de ingenieria de versiones Grupo de Ingenieria de Releases
<re@FreeBSD.org>. Este equipo es responsable de establecer los plazos de publicacion y controlar
el proceso de publicacion. Durante la congelacion del cddigo, los ingenieros de versiones tienen
la autoridad final sobre todos los cambios en el sistema para cualquier rama que tenga el estado
de version pendiente. Si hay algo que quieras incluir de FreeBSD-CURRENT a FreeBSD-STABLE
(independientemente de los valores que puedan tener en un momento dado), estas son las
personas con las que hablar al respecto.

Gordon Tetlow <gordon@FreeBSD.org>

Gordon Tetlow es el FreeBSD Security Officer y supervisa el Grupo Responsables de Seguridad
<security-officer@FreeBSD.org>.

Lista de correo para 'committers' de FreeBSD

{dev-src-all}, {dev-ports-all} y {dev-doc-all} son las listas de correo que utiliza el sistema de
control de versiones para mandar mensajes de commit. Nunca envies correo directamente a esas
listas. Envia so0lo respuestas a esta lista cuando son cortas y directamente relacionadas con un
commit.

Lista de correo de desarrolladores de FreeBSD

60

Todos los committers estdn suscritos a -developers. Esta lista se cre6 como un foro para los
asuntos relacionados con la "communidad" de committers. Ejemplos son las votaciones de Core,
anuncios, etc.

La Lista de correo de desarrolladores de FreeBSD es de uso exclusivo de los committers de
FreeBSD. Para desarrollar FreeBSD, los committers deben tener la capacidad de discutir asuntos

mailto:doceng@FreeBSD.org
https://lists.FreeBSD.org/subscription/freebsd-doc
https://www.FreeBSD.org/internal/doceng/
https://docs.freebsd.org/en/books/fdp-primer/
https://docs.freebsd.org/en/books/fdp-primer/
mailto:dch@FreeBSD.org
mailto:blackend@FreeBSD.org
mailto:delphij@FreeBSD.org
mailto:emaste@FreeBSD.org
mailto:cperciva@FreeBSD.org
mailto:bofh@FreeBSD.org
mailto:ivy@FreeBSD.org
mailto:re@FreeBSD.org
mailto:gordon@FreeBSD.org
https://www.FreeBSD.org/security/
mailto:security-officer@FreeBSD.org

abiertamente que se resolverdn antes de que sean anunciados publicamente. Discusiones con
franqueza sobre el trabajo en curso no son aptas para la publicacion abierta y podrian dafiar a
FreeBSD.

Se espera que todos los committers de FreeBSD no publiquen ni reenvien mensajes de la lista de
correo de desarrolladores de FreeBSD fuera de la membresia de la lista sin el permiso de todos
los autores. Los infractores seran eliminados de la lista de correo de desarrolladores de FreeBSD,
lo que resultard en la suspension de los privilegios de commit. Las violaciones repetidas o
flagrantes pueden resultar en la revocacion permanente de los privilegios de commit.

Esta lista no estd pensada como un sito para hacer revisiones de codigo o para otras cuestiones
técnicas. De hecho utilizarla para eso dafia el Proyecto FreeBSD ya que le da un aire de lista
cerrada donde las decisiones que afectan a toda la comunidad que usa FreeBSD no se hacen de
forma "abierta". Por ultimo, pero no menos importante, nunca, nunca, nunca, mandes un correo
a {developers-mail} y pongas en CC:/BCC: a otra lista de FreeBSD. Nunca, nunca envies correo a
otra lista de correo de FreeBSD con CC:/BCC: a la Lista de correo de desarrolladores de FreeBSD.
Hacerlo puede disminuir los beneficios de esta lista.

18. Guia de inicio rapido de SSH

1. Si no quieres escribir tu contrasefia cada vez que uses ssh(1), y utilizas claves para
autenticar, ssh-agent(1) esta aqui para ayudarte. Si quieres usar ssh-agent(1), asegurate de
ejecutarlo antes que otras aplicaciones. Los usuarios de X, por ejemplo, normalmente
hacen esto en su .xsession o .xinitrc. Lee ssh-agent(1) para mas detalles.

2. Genera un par de claves con ssh-keygen(1). El clave de pares terminard en tu directorio
$HOME/.ssh/.

o Sdlo se soportan claves ECDSA, Ed25519 o RSA.

3. Envia tu clave publica ($HOME/.ssh/id_ecdsa.pub, $HOME/.ssh/id_ed25519.pub, o
$HOME/.ssh/id_rsa.pub) a la persona que te estd dando de alta como committer de forma
que la pueda poner en yourlogin en /etc/ssh-keys/ en freefall.

Ahora se puede usar ssh-add(1) para autenticarse una vez por sesion. Solicita la frase de paso de la
clave privada y después la almacena en el agente de autenticacion (ssh-agent(1)). Utiliza ssh-add -d
para eliminar las claves almacenadas en el agente.

Pruébalo con un comando remoto sencillo: ssh freefall.FreeBSD.org 1s /usr.

Para mads informacion, lee security/openssh-portable, ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1),
y scp(1).

Para informacién sobre como afiadir, cambiar o eliminar claves ssh(1), lee este articulo.

61

https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-keygen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-add&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/security/openssh-portable/
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-add&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-keygen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=scp&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://wiki.freebsd.org/clusteradm/ssh-keys

19. Disponibilidad de Coverity® para los
Committers de FreeBSD

Todos los desarrolladores de FreeBSD pueden obtener acceso a los resultados de analisis de
Coverity para todo el software del Proyecto FreeBSD. Todo aquel que esté interesado en el acceso a
los resultados de andlisis de las ejecuciones automaticas de Coverity, pueden registrarse en Coverity
Scan.

La wiki de FreeBSD incluye una mini-guia para desarrolladores interesados en trabajar con los
informes de andlisis de Coverity®: https://wiki.freebsd.org/CoverityPrevent. Por favor, ten en
cuenta que esta mini-guia s6lo es accesible para los desarrolladores de FreeBSD, asi que si no
puedes acceder a esta pagina, tendrds que pedirle a alguien que te afiada a la lista de acceso
apropiada de la Wiki.

Por ultimo, a todos los desarrolladores de FreeBSD que vayan a usar Coverity® se les anima a
preguntar por mads detalles e informacion de uso, mediante el envio de preguntas a la lista de
correo de desarrolladores de FreeBSD.

20. La gran lista de reglas de los Committers
de FreeBSD

Todo aquel involucrado en el proyecto FreeBSD debe seguir el Cddigo de Conducta disponible en
https://www.FreeBSD.org/internal/code-of-conduct. Como committer, tu eres la cara visible del
proyecto y como te comportas tiene un impacto vital en la percepcion publica del mismo. Esta guia
expande las partes del Codigo de Conducta especificas para committers.

Respeta a los demdas committers.

Respeta a otros colaboradores.

Discute cualquier cambio significativo antes de hacer commit.

= WMo

Respeta los mantenedores que existan (si estan listados en el campo MAINTAINER en Makefile o en
MAINTAINER en el directorio raiz).

5. Cualquier cambio en disputa debe ser anulado en espera de la resolucion de la disputa si lo
solicita un mantenedor. Los cambios relacionados con la seguridad pueden anular los deseos
del mantenedor a discrecion del oficial de seguridad.

6. Los cambios van a FreeBSD-CURRENT antes de FreeBSD-STABLE a menos que el ingeniero de
versiones lo permita especificamente o que no sean aplicables a FreeBSD-CURRENT. Cualquier
cambio no trivial o no urgente que sea aplicable también debe permitirse que permanezca en
FreeBSD-CURRENT durante al menos 3 dias antes de fusionarse para que se puedan realizar las
pruebas suficientes. El ingeniero de versiones tiene la misma autoridad sobre la rama FreeBSD-
STABLE que se describe para el mantenedor en la regla # 5.

7. No luches en publico con otros committers; se ve mal.

8. Respeta la congelacion de codigo y lee las listas de correo de committers y developers
regularmente de forma que sepas que hay una congelacion de codigo en marcha.

62

http://scan.coverity.com/
http://scan.coverity.com/
https://wiki.freebsd.org/CoverityPrevent
https://www.FreeBSD.org/internal/code-of-conduct/

9. En caso de duda sobre cualquier procedimiento, jpregunta primero!
10. Prueba tus cambios antes de realizarlos.

11. No hagas commit en software contribuido sin aprobacion explicita de los respectivos
mantenedores.

Como se sefialé anteriormente, romper algunas de estas reglas puede ser motivo de suspension o,
en caso de reincidencia, eliminacion permanente de los privilegios de committer. Los miembros
individuales de core tienen el poder de suspender temporalmente los privilegios de commit hasta
que core en su conjunto tenga la oportunidad de revisar el problema. En caso de "emergencia" (un
committer que dafia el repositorio), los meisters del repositorio también pueden realizar una
suspension temporal. Solo una mayoria de 2/3 de core tiene la autoridad para suspender los
privilegios de commit durante mas de una semana o para eliminarlos permanentemente. Esta regla
no existe para que core se convierta en un grupo de dictadores crueles que pueden deshacerse de
los responsables de manera tan casual como las latas de refresco vacias, sino para darle al proyecto
una especie de mecanismo de seguridad. Si alguien esta fuera de control, es importante poder lidiar
con esto de inmediato en lugar de quedar paralizado por el debate. En todos los casos, un comitter
cuyos privilegios se suspenden o revocan tiene derecho a una "vista" ante core, determinandose en
ese momento la duracion total de la suspension. Un committer cuyos privilegios estén suspendidos
también puede solicitar una revision de la decision después de 30 dias y cada 30 dias a partir de
entonces (a menos que el periodo total de suspension sea inferior a 30 dias). Un committer cuyos
privilegios hayan sido revocados por completo puede solicitar una revision después de que haya
transcurrido un periodo de 6 meses. Esta politica de revision es "estrictamente informal" y, en todos
los casos, core se reserva el derecho de actuar o ignorar las solicitudes de revision si sienten que su
decision original es la correcta.

En todos los demas aspectos de la operacion del proyecto, core es un subconjunto de committers y
estd vinculado por las mismas reglas. E1 hecho de que alguien esté en core no significa que tenga
una dispensacion especial para salir de cualquiera de las lineas pintadas aqui; los "poderes
especiales” de core solo se activan cuando actua como grupo, no de forma individual. Como
individuos, los miembros del equipo central son todos committers primero y miembros de core en
segundo lugar.

20.1. Detalles

1. Respeta a los demds committers.

Esto significa que debes tratar a los demas committers como los desarrolladores de grupos de
iguales que son. A pesar de nuestros ocasionales intentos de demostrar lo contrario, uno no
llega a committer siendo estupido y nada irrita mas que ser tratado de esa manera por uno de
sus compafieros. Si siempre sentimos respeto por los demas o no (y todos tienen dias libres),
todavia tenemos que tratar a otros committers con respeto en todo momento, en foros publicos
y en correos privados.

Poder trabajar juntos a largo plazo es el mayor activo de este proyecto, uno mucho mas
importante que cualquier conjunto de cambios en el cddigo, y convertir los argumentos sobre el
codigo en problemas que afectan nuestra capacidad a largo plazo para trabajar juntos en
armonia simplemente no vale la pena. -abandonado por cualquier tramo concebible de la

63

64

imaginacion.

Para cumplir con esta regla, no envies correos electronicos cuando estés enfadado o te
comportes de una manera que pueda parecer a los demas como una confrontacion innecesaria.
Primero cadlmate, luego piensa en como comunicarte de la manera mas efectiva para convencer
a las otras personas de que tu lado del argumento es correcto, no te desahogues un poco para
sentirte mejor en el corto plazo a costa de una guerra de llamas a largo plazo. No solo esto es
una mala "economia energética", sino que las demostraciones repetidas de agresion publica que
perjudican nuestra capacidad para trabajar bien juntos seran tratadas severamente por el
liderazgo del proyecto y pueden resultar en la suspension o terminacion de tus privilegios de
commit. El liderazgo del proyecto tendrd en cuenta tanto las comunicaciones publicas como las
privadas que se le presenten. No buscara la divulgacion de comunicaciones privadas, pero la
tendra en cuenta si es voluntaria por parte de los autores de la denuncia.

Todo esto nunca es una opcion de la que disfrute en lo mas minimo el liderazgo del proyecto,
pero la unidad es lo primero. Ninguna cantidad de c6digo o buen consejo se puede cambiar por
esta unidad.

Respeta a otros colaboradores.

No siempre fuiste un committer. Hubo un tiempo en que contribuiste. Recuerda eso en todo
momento. Recuerda lo que fue tratar de obtener ayuda y atencion. No olvides que tu trabajo
como colaborador fue muy importante para ti. Recuerda como fue. No desanimes, menosprecies
0 hagas de menos a los voluntarios. Tratalos con respeto. Son nuestros committers en espera.
Son tan importantes para el proyecto como los committers. Sus contribuciones son tan vdlidas e
importantes como las tuyas. Después de todo, hiciste muchas contribuciones antes de
convertirse en committer. Recuerda eso siempre.

Considera los puntos mencionados en Respeta a otros committers y aplicalos también a los
voluntarios.

Discute cualquier cambio significativo antes de hacer commit.

El repositorio no es donde los cambios se envian inicialmente para su correccion o para ser
discutidos, eso ocurre primero en las listas de correo o mediante el uso del servicio Phabricator.
El commit solo ocurrird una vez que se haya alcanzado algo parecido al consenso. Esto no
significa que se requiera permiso antes de corregir todos los errores de sintaxis obvios o errores
ortograficos de la pagina del manual, solo que es bueno desarrollar una idea de cudndo un
cambio propuesto no es tan obvio y requiere algunos comentarios primero. A la gente
realmente no le importan los cambios radicales si el resultado es claramente mejor que lo que
tenian antes, simplemente no les gusta ser sorprendidos por esos cambios. La mejor manera de
asegurarse de que todo va por buen camino es hacer que el cddigo sea revisado por uno o mas
committers.

En caso de duda, jsolicite una revision!
Respeta a los mantenedores existentes si estan listados como tales.

Muchas partes de FreeBSD no tienen "duefio” en el sentido de que cualquier individuo saltara
sobre ti y te gritara si haces un cambio en "su" area, pero aun asi merece la pena comprobarlo

primero. Una convencion que usamos es poner una linea "maintainer" en el Makefile para
cualquier paquete o subarbol que es mantenido de forma activa por una o mds personas; visita
see Directrices y Politicas del Arbol de Fuentes para obtener documentacién sobre esto. Donde
hay secciones de cddigo con varios mantenedores, los commits efectuados por un mantenedor
en dicha 4rea deben ser revisados por al menos otro mantenedor. En los casos donde el
mantenimiento de algo no esta claro, mira los logs del repositorio para los ficheros en cuestion y
mira si alguien ha estado trabajando recientemente o de forma predominante en esa area.

5. Cualquier cambio en disputa debe ser anulado en espera de la resolucion de la disputa si lo
solicita un mantenedor. Los cambios relacionados con la seguridad pueden anular los deseos
del mantenedor a discrecion del oficial de seguridad.

Esto puede ser dificil de aceptar en tiempos de conflicto (cuando cada parte estd convencida de
que tienen razon, por supuesto), pero un sistema de control de versiones hace innecesario tener
una disputa en curso cuando es mucho mas facil simplemente revertir el cambio, para calmar a
todos nuevamente y luego intentar averiguar cudl es la mejor manera de proceder. Si el cambio
resulta ser lo mejor después de todo, se puede recuperar facilmente. Si resulta que no es asi,
entonces los usuarios no tenian que vivir con el falso cambio en el arbol mientras todos
debatian afanosamente sus méritos. La gente muy raramente pide deshacer cambios en el
repositorio, ya que la discusion generalmente expone cambios malos o controvertidos incluso
antes de que ocurra la confirmacion, pero en ocasiones tan raras, el retroceso debe hacerse sin
discutir para que podamos pasar inmediatamente al tema de resolver si era falso o no.

6. Los cambios van a FreeBSD-CURRENT antes de FreeBSD-STABLE a menos que el ingeniero de
versiones lo permita especificamente o que no sean aplicables a FreeBSD-CURRENT. Cualquier
cambio no trivial o no urgente que sea aplicable también debe permitirse que permanezca en
FreeBSD-CURRENT durante al menos 3 dias antes de fusionarse para que se puedan realizar las
pruebas suficientes. El ingeniero de versiones tiene la misma autoridad sobre la rama FreeBSD-
STABLE como se describe en la regla # 5.

Este es otro problema de tipo "no discutas sobre eso", ya que es el ingeniero de versiones el
responsable en ultima instancia (y recibe una paliza) si un cambio resulta ser malo. Respeta
esto y brinda al ingeniero de versiones tu total cooperacion cuando se trata de la rama FreeBSD-
STABLE. El manejo de FreeBSD-STABLE puede parecer con frecuencia demasiado conservador
para el observador casual, pero también ten en cuenta el hecho de que se supone que el
conservadurismo es el sello distintivo de FreeBSD-STABLE y que se aplican reglas diferentes a
las de FreeBSD-CURRENT. Tampoco tiene sentido que FreeBSD-CURRENT sea un campo de
pruebas si los cambios se fusionan con FreeBSD-STABLE inmediatamente. Los cambios
necesitan la oportunidad de ser probados por los desarrolladores de FreeBSD-CURRENT, asi que
deja pasar un tiempo antes de fusionarlos, a menos que la correccion de FreeBSD-STABLE sea
critica, urgente o tan obvia como para hacer innecesarias mds pruebas (correccion de errores /
errores tipograficos, etc.) En otras palabras, aplica el sentido comun.

Los cambios a las ramas de seguridad (por ejemplo, releng/9.3) deben ser aprobados por un
miembro de Grupo Responsables de Seguridad <security-officer@FreeBSD.org>, o en algunos
casos, por un miembro de Grupo de Ingenieria de Releases <re@FreeBSD.org>.

7. No luches en publico con otros committers; se ve mal.

65

https://docs.freebsd.org/en/books/developers-handbook/#policies
mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org

10.

11.

66

Este proyecto tiene una imagen publica que defender y esa imagen es muy importante para
todos nosotros, especialmente si queremos seguir atrayendo nuevos miembros. Habra ocasiones
en las que, a pesar de los mejores intentos de autocontrol de todos, se pierden los animos y se
intercambian palabras de enojo. Lo mejor que se puede hacer en tales casos es minimizar los
efectos de esto hasta que todos se hayan calmado de nuevo. No transmitas palabras de enojo en
publico y no reenvies correspondencia privada u otras comunicaciones privadas a listas de
correo publicas, alias de correo, canales de mensajeria instantanea o sitios de redes sociales. Lo
que la gente dice cara a cara a menudo esta menos suavizado que lo que dirian en publico y, por
lo tanto, tales comunicaciones no tienen cabida alli; solo sirven para inflamar una situacién que
ya es mala. Si la persona que envia un mensaje incendiario al menos tuvo el detalle de enviarlo
en privado, entonces ten el detalle de mantenerlo en privado. Si sientes que otro desarrollador
te esta tratando injustamente y te estd causando angustia, plantea el asunto a Core en lugar de
hacerlo publico. Core hara todo lo posible para pacificar y hacer que las cosas vuelvan a la
cordura. En los casos en que la disputa implique un cambio en la base de codigo y los
participantes no parezcan estar llegando a un acuerdo amistoso, Core puede designar a un
tercero de mutuo acuerdo para resolver la disputa. Todas las partes involucradas deben aceptar
quedar vinculadas por la decisién tomada por este tercero.

Respeta todas las congelaciones de cddigo y lee las listas de correo de committers y developers
regularmente de forma que sepas cuando una congelacion esta en curso.

Realizar cambios no aprobados durante una congelacion de codigo es un gran error y se espera
que los committers se mantengan actualizados sobre lo que estd sucediendo antes de saltar
después de una larga ausencia y hacer commit de 10 megabytes de material acumulado. A las
personas que abusen de esto de forma regular se les suspenderan sus privilegios de commit
hasta que regresen del Happy Reeducation Camp de FreeBSD que llevamos a cabo en
Groenlandia.

En caso de duda sobre cualquier procedimiento, jpregunta primero!

Cuando se tiene prisa se cometen muchos errores y simplemente asume que sabe la forma
correcta de hacer algo. Si no lo has hecho antes, es muy probable que no sepas realmente la
forma en que hacemos las cosas y realmente necesites preguntar primero o te avergonzaras por
completo en publico. No hay vergiienza en preguntar ";Cémo diablos hago esto?" Ya sabemos
que eres una persona inteligente; de lo contrario, no serias un committer.

Prueba tus cambios antes de realizarlos.

Si tus cambios son en el kernel, asegurate de que aun puedes compilar tanto GENERIC como
LINT. Si tus cambios estdn en cualquier otro lugar, asegurate de que aun puedes compilar el
resto del sistema (make world). Si tus cambios son en una rama, asegurate de que la prueba se
realice con una maquina que ejecute ese codigo. Si tienes un cambio que también puede romper
otra arquitectura, asegurate de probar en todas las arquitecturas compatibles. Por favor
asegurate de que tu cambio funciona para supported toolchains. Por favor dirigete a FreeBSD
Internal Page para obtener una lista de los recursos disponibles. A medida que se agregan otras
arquitecturas a la lista de plataformas compatibles con FreeBSD, los recursos de prueba
compartidos apropiados estaran disponibles.

No hagas commit en software contribuido sin aprobacion explicita de los respectivos

https://www.FreeBSD.org/internal/
https://www.FreeBSD.org/internal/

mantenedores.
Cadigo contribuido es cualquier cosa bajo los arboles src/contrib, src/crypto, o src/sys/contrib.

Los 4arboles mencionados anteriormente son para software contribuido generalmente
importado a una rama de un proveedor. Hacer commit alli puede causar dolores de cabeza
innecesarios al importar versiones mdas nuevas del software. En general, considera enviar
parches directamente al proveedor. Los parches se pueden enviar a FreeBSD primero con el
permiso del desarrollador.

Las razones para modificar el software en el proyecto original van desde querer un control
estricto sobre una dependencia estrechamente acoplada hasta la falta de portabilidad en la
distribucion del cddigo del repositorio candnico. Independientemente de la razon, el esfuerzo
por minimizar la carga de mantenimiento de nuestra copia es util para los comparieros
mantenedores. Evita realizar cambios triviales o estéticos en los archivos, ya que hace que cada
merge a partir de entonces sea mas dificil: dichos parches deben volver a verificarse
manualmente en cada importacion.

Siun trozo particular de software no tienen mantenedor, se te anima a que tomes propiedad del
mismo. Si no estas seguro del estado actual del mantenimiento del cddigo envia un correo a
Lista sobre arquitectura y disefio de FreeBSD y pregunta.

20.2. Politica sobre arquitecturas multiples

FreeBSD ha afiadido varias arquitecturas nuevas durante los ultimos ciclos de lanzamiento y ya no
es en realidad un sistema operativo centrado en i386™. En un esfuerzo por hace mas facil el poder
mantener FreeBSD portable en las distintas plataformas que soportamos, Core ha desarrollado esta
exigencia:

Nuestra plataforma de referencia de 32 bits es i386 y nuestra plataforma de referencia de 64 bits es
amd64. El trabajo de disefio importante (incluidos los cambios importantes de API y ABI) debe
demostrar su valia en al menos una plataforma de 32 bits y al menos una de 64 bits,
preferiblemente las plataformas de referencia primarias, antes de que se pueda hacer commit en el
arbol de fuentes.

Los desarrolladores también deben conocer nuestra Politica de Niveles para el soporte a largo plazo
de arquitecturas de hardware. Las reglas aqui estan destinadas a proporcionar una guia durante el
proceso de desarrollo y son distintas de los requisitos para las caracteristicas y arquitecturas
enumeradas en esa seccion. Las reglas de nivel para el soporte de caracteristicas en arquitecturas
en el momento del lanzamiento son mas estrictas que las reglas de cambios durante el proceso de
desarrollo.

20.3. Politica sobre Multiples Compiladores

FreeBSD compila tanto con Clang como con GCC. El proyecto hace esto de forma cuidadosa y
controlada para maximizar los beneficios de este trabajo extra, a la vez que mantiene el trabajo
extra en minimos. Suportar tanto Clang como GCC mejora la flexibilidad que tienen nuestros
usuarios. Estos compiladores tienen distintas fortalezas y debilidades, y soportar ambos permite a

67

https://lists.FreeBSD.org/subscription/freebsd-arch

los usuarios escoger el que mejor se adapta a sus necesidades. Clang y GCC soportan dialectos
similares de C y C++, necesitdndose una cantidad relativamente pequefia de cédigo condicional. E1
proyecto gana mas cobertura de codigo y mejora la calidad del codigo usando caracteristicas de
ambos compiladores. El proyecto es capaz de compilar en mas entornos de usuario y aprovechar
mas entornos de CI al soportar este rango, incrementando las ventajas para los usuarios y ddndoles
mas herramientas con las que probar. Mediante la restriccion cuidadosa de las versiones modernas
soportadas en estos compiladores, el proyecto evita incrementar la matriz de pruebas sin
necesidad. Los compiladores mas viejos y oscuros, asi como dialectos mas antiguos de los lenguajes,
tienen un soporte extremadamente limitado que permite a los programas de usuarios compilar con
ellos, pero sin limitar a que el sistema base se compile con ellos. El equilibro exacto estd en
constante evolucion para asegurar que los beneficios del trabajo extra son mayores que la carga
que imponen. El proyecto solia soportar compiladores de Intel realmente antiguos o versiones
antiguas de GCC, pero cambiamos soportar esos compiladores obsoletos por una seleccidn
cuidadosas de compiladores modernos. Esta seccion documenta donde usamos los diferentes
compiladores, y las expectativas al respecto.

El proyecto FreeBSD incorpora el compilador Clang. Debido a que estd en el arbol, este es el
compilador mejor soportado. Todos los cambios tienen que compilar con €él, antes de hacer el
commit. Las comprobaciones completas, como sean apropiadas para el cambio, se deberian hacer
con este compilador.

En cualquier momento, el proyecto FreeBSD también soporta uno o mas compiladores fuera del
arbol. En este momento, esto es GCC 12.x. Idealemente, los committers deberian compilar con este
compilador, especialmente para cambios grandes o arriesgados. El compilador esta disponible
como el paquete ${TARGET_ARCH}-gcc${VERSION} como aarch64-gccl2 o riscv64-gccl2. El proyecto
ejecuta trabajos automaticos de CI para compilar todo con estos compiladores. Se espera que los
committers arreglen los trabajos que se rompan con sus cambios. Los committers pueden probar la
compilacion con, por ejemplo CROSS_TOOLCHAIN=aarch64-gcc12 o CROSS_TOOLCHAIN=11vm15 cuando sea
necesario.

El proyecto FreeBSD también tiene algunos pipelines de CI en github. Para las pull requests en
github y algunas ramas empujadas a los forks de github, se ejecutan algunos trabajos de
compilacion cruzada. Estos comprueba la compilacion de FreeBSD usando una version de Clang
que a veces durante un tiempo esta una version por delante de la version incluida en el arbol.

El proyecto FreeBSD también actualiza los compiladores. Tanto Clang como GCC se cambian
constantemente. Algunos cambios en el arbol, por ejemplo eliminando las declaraciones y
definiciones de funciones en estilo antiguo K&R, se introduciran en el arbol antes de cambiar el
compilador. Los committers deberian tratar de ser conscientes de esto y ser receptivos a la hora de
analizar problemas con su cédigo o cambios con estos nuevos compiladores. Ademas, justo después
de que se ha introducido una nueva version del compilador en el arbol, la gente necesita compilar
con la version antigua si se sospecha que ha habido una regresion no detectada.

Ademas del compilador, el compilador usa directamente LDD de LLVM vy las binutils de GNU. Los
committers deberian ser conscientes de las diferencias en la sintaxis de ensamblador y las
caracteristicas de los enlazadores y asegurarse de que ambas variantes funcionan. Estos
componentes se comprobaran como parte de los trabajos de CI de FreeBSD para Clang o GCC.

El proyecto FreeBSD proporciona cabeceras y librerias que permiten que se puedan usar otros

68

https://cgit.freebsd.org/ports/tree/devel/freebsd-gcc12/
https://cgit.freebsd.org/ports/tree/devel/freebsd-gcc12/

compiladores que no estén en el sistema base. Estas cabeceras tienen soporte para hacer que el
entorno sea tan estricto como el estandar, soportando dialectos anteriores a ANSI-C hasta C89, y
otros casos esquina que la coleccion de ports ha dejado al descubierto Este soporte limita la
retirada de estdndares antiguos en sitios como ficheros de cabecera, pero no limitan la
actualizacion del sistema base a nuevos dialectos. Tampoco requiere que el sistema base compile
con estos estdndares antiguos. Romper el soporte causaria fallos en los paquetes de la coleccion de
ports, de forma que se deberia evitar en la medida de lo posible, y arreglarlo rdpidamente cuando
sea facil hacerlo.

El sistema de compilacion de FreeBSD actualmente soporta estos entornos diferentes. Conforme se
afladen nuevos avisos a los compiladores, el proyecto intenta arreglarlos. Sin embargo, a veces
estos avisos requieren un trabajo extensivo, de forma que se silencian de alguna forma usando
variables que evalien a lo que sea apropiado dependiendo de la version del compilador. Los
desarrolladores deberian ser conscientes de esto, y asegurar que cualquier flag especifico de un
compilador deberia ser usado condicionalmente.

20.3.1. Versiones Actuales de los Compiladores

El compilador en el sistema base es actualmente Clang 15.x. Actualmente, se prueban GCC 12 y
Clang 12, 13, 14 y 15 en los trabajos de CI de jenkins en github. Se esta trabajando para preparar el
arbol para Clang 16. La rama soportada mdas antigua del proyecto tiene Clang 12, asi que las
porciones del build que hacen el arranque deben funcionar con Clang desde la version 12 hasta la
15.

20.4. Otras sugerencias

Al realizar cambios en la documentacion, utiliza un corrector ortografico antes de realizar el
commit. Para todos los documentos XML, verifica que las directivas de formato sean correctas
ejecutando make linty textproc/igor.

Para péaginas de manual, ejecuta sysutils/manck y textproc/igor sobre las paginas de manual para
verificar que todas las referencias cruzadas y las referencias de ficheros son correctas y que la
pagina del manual tiene instalados todos los MLINKS apropiados.

No mezcles arreglos de estilo con nuevas funciones. Una correccion de estilo es cualquier cambio
que no modifica la funcionalidad del cddigo. La combinacién de los cambios confunde el cambio de
funcionalidad al solicitar diferencias entre las revisiones, lo que puede ocultar cualquier error
nuevo. No incluyas cambios de espacios en blanco con cambios de contenido en los commits de
doc/. El desorden adicional en las diferencias hace que el trabajo de los traductores sea mucho mas
dificil. En su lugar, realiza cambios de estilo o espacios en blanco en commits separados que estén
claramente etiquetados como tales en el mensaje de commit.

20.5. Funciones obsoletas

Cuando sea necesario eliminar la funcionalidad del software en el sistema base, sigue estas pautas
siempre que sea posible:

1. En la pagina del manual y posiblemente en las notas de la versiéon se menciona que la opcion,

69

https://cgit.freebsd.org/ports/tree/textproc/igor/
https://cgit.freebsd.org/ports/tree/sysutils/manck/
https://cgit.freebsd.org/ports/tree/textproc/igor/

2.
3.

utilidad o interfaz esta obsoleta. El uso de la funcién obsoleta genera una advertencia.
La opcion, utilidad o interfaz se conserva hasta la préxima version principal (punto cero).

La opcion, utilidad o interfaz se elimina y ya no se documenta. Ahora esta obsoleto. También es
generalmente una buena idea anotar su eliminacion en las notas de la version.

20.6. Privacidad y confidencialidad

1.

70

La mayoria de los negocios de FreeBSD se realizan en publico.

FreeBSD es un proyecto abierto. Lo cual significa no solo que cualquiera puede usar el codigo
fuente, sino que la mayoria del proceso de desarrollo esta abierto para el escrutinio publico.

Ciertos asuntos delicados deben permanecer privados o mantenidos bajo embargo.

Lamentablemente, no puede haber una transparencia total. Como desarrollador de FreeBSD,
tendrds un cierto grado de acceso privilegiado a la informacion. En consecuencia, se espera que
respetes ciertos requisitos de confidencialidad. A veces la necesidad de confidencialidad
proviene de colaboradores externos o tiene un limite de tiempo especifico. Sin embargo, sobre
todo, se trata de no liberar comunicaciones privadas.

El oficial de seguridad tiene el control exclusivo sobre la publicacion de avisos de seguridad.

Mientras que hay problemas de seguridad que afectan a muchos sistemas operativos diferentes,
FreeBSD frecuentemente depende del acceso temprano para poder preparar avisos para el
lanzamiento coordinado. A menos que se pueda confiar en que los desarrolladores de FreeBSD
mantendran la seguridad, dicho acceso temprano no estara disponible. El oficial de seguridad es
responsable de controlar el acceso previo al lanzamiento a la informacion sobre
vulnerabilidades y de programar el lanzamiento de todos los avisos. Puedes solicitar ayuda bajo
condicion de confidencialidad de cualquier desarrollador con conocimientos relevantes para
preparar soluciones de seguridad.

Las comunicaciones con Core se mantienen confidenciales durante el tiempo que sea necesario.

Las comunicaciones con Core inicialmente se trataran de forma confidencial. Sin embargo, con
el tiempo, la mayor parte del negocio de Core se resumird en informes basicos mensuales o
trimestrales. Se tendra cuidado de no hacer publicos los detalles sensibles. Es posible que los
registros de algunos temas particularmente sensibles no se informen en absoluto y se
conservaran solo en los archivos privados de Core.

Es posible que se requieran acuerdos de no divulgacion para acceder a ciertos datos
comercialmente sensibles.

El acceso a ciertos datos comercialmente sensibles solo puede estar disponible bajo un Acuerdo
de Confidencialidad. Se debe consultar al personal legal de la Fundaciéon FreeBSD antes de
firmar cualquier acuerdo vinculante.

Las comunicaciones privadas no deben hacerse publicas sin permiso.

Mas alla de los requisitos especificos anteriores, existe una expectativa general de no publicar

comunicaciones privadas entre desarrolladores sin el consentimiento de todas las partes
involucradas. Pide permiso antes de reenviar un mensaje a una lista de correo publica o
publicarlo en un foro o sitio web al que puedan acceder otras personas que no sean los
corresponsales originales.

7. Las comunicaciones en canales de acceso restringido o solo para proyectos deben mantenerse
privadas.

De manera similar a las comunicaciones personales, ciertos canales de comunicacion internos,
incluidas las listas de correo de FreeBSD Committer y los canales de IRC de acceso restringido,
se consideran comunicaciones privadas. Se requiere permiso para publicar material de estas
fuentes.

8. Core puede aprobar la publicacion.

Cuando no sea practico obtener permiso debido a la cantidad de corresponsales o cuando el
permiso para publicar se niegue sin razon, Core puede aprobar la divulgacién de tales asuntos
privados que merecen una publicacién mas general.

21. Soporte para multiples arquitecturas

FreeBSD es un sistema operativo altamente portable destinado a funcionar en muchos tipos
diferentes de arquitecturas de hardware. Mantener una separacion limpia del cédigo dependiente
de la maquina (MD) y el cddigo independiente de la maquina (MI), asi como minimizar el codigo
MD, es una parte importante de nuestra estrategia para permanecer agiles con respecto a las
tendencias actuales de hardware. Cada nueva arquitectura de hardware soportada por FreeBSD
aumenta sustancialmente el coste del mantenimiento del cddigo, el soporte de la cadena de
herramientas y la ingenieria de versiones. También aumenta drasticamente el coste de las pruebas
efectivas de los cambios del kernel. Como tal, existe una fuerte motivacion para diferenciar entre
clases de soporte para varias arquitecturas mientras se mantiene fuerte en algunas arquitecturas
clave que se ven como FreeBSD "Publico objetivo".

21.1. Declaracion de intencion general

El proyecto FreeBSD tiene como objetivo "estaciones de trabajo comerciales listas para usar (COTS)
de calidad de produccion, servidores y sistemas integrados de alta gama". Al mantener un enfoque
en un conjunto estrecho de arquitecturas de interés en estos entornos, el Proyecto FreeBSD puede
mantener altos niveles de calidad, estabilidad y rendimiento, asi como minimizar la carga en varios
equipos de soporte en el proyecto, como el equipo de ports, equipo de documentacion, oficial de
seguridad y equipos de ingenieros de versiones. La diversidad en el soporte de hardware amplia las
opciones para los consumidores de FreeBSD al ofrecer nuevas caracteristicas y oportunidades de
uso, pero estos beneficios siempre deben considerarse cuidadosamente en términos del coste de
mantenimiento del mundo real asociado con el soporte de plataforma adicional.

El Proyecto FreeBSD diferencia los objetivos de la plataforma en cuatro niveles. Cada nivel incluye
una lista de garantias en las que los consumidores pueden confiar, asi como las obligaciones del
Proyecto y los desarrolladores para cumplir con esas garantias. Estas listas definen las garantias
minimas para cada nivel. El Proyecto y los desarrolladores pueden proporcionar niveles

71

adicionales de soporte mds alld de las garantias minimas para un nivel determinado, pero dicho
soporte adicional no estd garantizado. Cada objetivo de plataforma se asigna a un nivel especifico
para cada rama estable. Como resultado, a una plataforma de destino podria asignarsele diferentes
niveles en ramas estables concurrentes.

21.2. Objetivos de plataforma

El soporte para una plataforma de hardware consta de dos componentes: el soporte del kernel y las
interfaces binarias de aplicaciones (ABI) del drea de usuario. El soporte de la plataforma del kernel
incluye las cosas necesarias para ejecutar un kernel FreeBSD en una plataforma de hardware, como
la administracion de memoria virtual dependiente de la maquina y los controladores de
dispositivo. Una ABI de drea de usuario especifica una interfaz para que los procesos de usuario
interactuen con un nucleo de FreeBSD y bibliotecas del sistema base. Una ABI de area de usuario
incluye interfaces de llamada al sistema, el disefio y la semdantica de las estructuras de datos
publicas y el disefio y la semdantica de los argumentos que se pasan a las subrutinas. Algunos
componentes de una ABI pueden definirse mediante especificaciones como el disefio de objetos de
excepcion de C ++ o convenciones de llamada para funciones de C.

Un kernel de FreeBSD también usa una ABI (a veces denominada interfaz binaria del kernel (KBI))
que incluye la semantica y los disefios de las estructuras de datos publicas y el disefio y la
semdntica de los argumentos de las funciones publicas dentro del propio kernel.

Un kernel de FreeBSD puede admitir multiples ABI de usuario. Por ejemplo, el kernel amdé64 de
FreeBSD es compatible con las ABI de area de usuario amd64 e i386 de FreeBSD, asi como con las
ABI de area de usuario de Linux x86_64 e 1386. Un kernel de FreeBSD deberia admitir un ABI
"nativo" como ABI predeterminado. El "ABI" nativo generalmente comparte ciertas propiedades con
la ABI del kernel, como la convencion de llamadas de C, tamafios de tipos bdsicos, etc.

Los niveles se definen tanto para los nucleos como para las ABI del area de usuario. En el caso
comun, el kernel de una plataforma y las ABI de FreeBSD se asignan al mismo nivel.

21.3. Nivel 1: Arquitecturas totalmente compatibles

Las plataformas de nivel 1 son las plataformas FreeBSD mds maduras. Estan respaldados por el
oficial de seguridad, la ingenieria de versiones y el Equipo de Gestion de Ports. Se espera que las
arquitecturas de nivel 1 sean de calidad de produccion con respecto a todos los aspectos del sistema
operativo FreeBSD, incluidos los entornos de instalacion y desarrollo.

El Proyecto FreeBSD ofrece las siguientes garantias a los consumidores de plataformas Tier 1:
* Las imdagenes oficiales de lanzamiento de FreeBSD serdn proporcionadas por el equipo de

ingenieros de lanzamiento.

* Se proporcionaran actualizaciones binarias y parches de origen para avisos de seguridad y
avisos de erratas para las versiones compatibles.

» Se proporcionaran parches de origen para avisos de seguridad para las sucursales admitidas.

* Las actualizaciones binarias y los parches de origen para los avisos de seguridad
multiplataforma se proporcionardn normalmente en el momento del anuncio.

72

* Los cambios en las ABI del drea de usuario generalmente incluiran ajustes de compatibilidad
para garantizar el funcionamiento correcto de los binarios compilados en cualquier rama
estable donde la plataforma sea de nivel 1. Es posible que estos ajustes no estén habilitados en
la instalacion predeterminada. Si no se proporcionan calzas de compatibilidad para un cambio
de ABI, la falta de calzas se documentara claramente en las notas de la version.

* Los cambios en ciertas partes de la ABI del kernel incluirdn ajustes de compatibilidad para
garantizar el funcionamiento correcto de los modulos del kernel compilados con la version
compatible mas antigua de la rama. Tenga en cuenta que no todas las partes de la ABI del kernel
estdn protegidas.

* El equipo de ports proporcionara paquetes binarios oficiales para software de terceros. Para las
arquitecturas integradas, estos paquetes pueden construirse de forma cruzada a partir de una
arquitectura diferente.

* Los ports mas relevantes deberian construir o tener los filtros apropiados para evitar que se
construyan otros inapropiados.

* Las nuevas caracteristicas que no son inherentemente especificas de la plataforma seran
completamente funcionales en todas las arquitecturas de Nivel 1.

* Las caracteristicas y las correcciones de compatibilidad utilizadas por los binarios compilados
contra ramas estables mas antiguas pueden eliminarse en versiones principales mas recientes.
Dichas eliminaciones se documentaran claramente en las notas de la version.

* Las plataformas de nivel 1 deben estar completamente documentadas. Las operaciones bdsicas
se documentaran en el manual de FreeBSD.

* Las plataformas de nivel 1 se incluirdn en el arbol de fuentes.

* Las plataformas de nivel 1 deben ser auto contenidas, ya sea a través de la cadena de
herramientas en arbol o una cadena de herramientas externa. Si se requiere una cadena de
herramientas externa, se proporcionardn paquetes binarios oficiales para una cadena de
herramientas externa.

Para mantener la madurez de las plataformas de Nivel 1, el Proyecto FreeBSD mantendra los
siguientes recursos para apoyar el desarrollo:

* Crea y prueba el soporte de automatizacion, ya sea en el cluster de FreeBSD.org o en alguna otra
ubicacion facilmente disponible para todos los desarrolladores. Las plataformas integradas
pueden sustituir un emulador disponible en el cluster de FreeBSD.org por hardware real.

* Inclusion en los objetivos make universe y make tinderbox.
* Hardware dedicado en uno de los clusteres de FreeBSD para la construccion de paquetes (ya sea

de forma nativa o mediante gemu-user).

En conjunto, los desarrolladores deben proporcionar lo siguiente para mantener el estado de Nivel
1 de una plataforma:

* Los cambios en el arbol de fuentes no deben romper conscientemente la construccién de una
plataforma de Nivel 1.

* Las arquitecturas de nivel 1 deben tener un ecosistema maduro y saludable de usuarios y
desarrolladores activos.

73

* Los desarrolladores deberian poder crear paquetes en sistemas de Nivel 1 no integrados y
comunmente disponibles. Esto puede significar compilaciones nativas si los sistemas no
integrados estdn comunmente disponibles para la plataforma en cuestidon, o puede significar
compilaciones cruzadas alojadas en alguna otra arquitectura de Nivel 1.

* Los cambios no pueden romper la ABI del drea de usuario. Si se requiere un cambio de ABI, la
compatibilidad de ABI para binarios existentes debe proporcionarse mediante el uso de
versiones de simbolos o cambios de version de biblioteca compartida.

* Los cambios combinados en ramas estables no pueden romper las partes protegidas de la ABI
del kernel. Si se requiere un cambio de ABI del kernel, el cambio debe modificarse para
preservar la funcionalidad de los mdédulos del kernel existentes.

21.4. Nivel 2: Arquitecturas de desarrollo y de nicho

Las plataformas de nivel 2 son plataformas FreeBSD funcionales, pero menos maduras. No cuentan
con el apoyo del oficial de seguridad, la ingenieria de versiones y los equipos de administracion de
ports.

Las plataformas de nivel 2 pueden ser candidatas a plataformas de nivel 1 que aun se encuentran
en desarrollo activo. Las arquitecturas que llegan al final de su vida util también pueden pasar del
estado de Nivel 1 al estado de Nivel 2 a medida que disminuye la disponibilidad de recursos para
continuar manteniendo el sistema en un estado de Calidad de Produccion. Las arquitecturas
especializadas bien soportadas también pueden ser de Nivel 2.

El Proyecto FreeBSD proporciona las siguientes garantias a los consumidores de plataformas Tier 2:

* La infraestructura de ports debe incluir soporte bdsico para arquitecturas de Nivel 2 suficiente
para soportar la construccion de ports y paquetes. Esto incluye soporte para paquetes basicos
como ports-mgmt / pkg, pero no hay garantia de que los ports arbitrarios sean compilables o
funcionales.

» Las nuevas caracteristicas que no son inherentemente especificas de la plataforma deberian ser
factibles en todas las arquitecturas de Nivel 2 si no se implementan.

* Las plataformas de nivel 2 se incluirdn en el arbol de fuentes.

* Las plataformas de nivel 2 deben auto alojarse a través de la cadena de herramientas en arbol o
una cadena de herramientas externa. Si se requiere una cadena de herramientas externa, se
proporcionardn paquetes binarios oficiales para una cadena de herramientas externa.

* Las plataformas de nivel 2 deben proporcionar kernels funcionales y dreas de usuario incluso si
no se proporciona una distribucion de lanzamiento oficial.

Para mantener la madurez de las plataformas Tier 2, el Proyecto FreeBSD mantendra los siguientes
recursos para apoyar el desarrollo:

* Inclusion en los objetivos make universe y make tinderbox.

En conjunto, los desarrolladores deben proporcionar lo siguiente para mantener el estado de Nivel
2 de una plataforma:

* Los cambios en el drbol de fuentes no deberian romper a sabiendas la construcciéon de una

74

plataforma de Nivel 2.
» Las arquitecturas de nivel 2 deben tener un ecosistema activo de usuarios y desarrolladores.

* Si bien se permite que los cambios rompan la ABI del rea de usuario, la ABI no debe romperse
gratuitamente. Los cambios significativos en la ABI del area de usuario deben restringirse a las
versiones principales.

* Las nuevas funciones que aun no se han implementado en las arquitecturas de nivel 2 deberian
proporcionar un medio para desactivarlas en esas arquitecturas.

21.5. Nivel 3: Arquitecturas experimentales

Las plataformas de nivel 2 son plataformas FreeBSD funcionales, pero menos maduras. No cuentan
con el apoyo del oficial de seguridad, la ingenieria de versiones y el Equipo de Gestion de Ports.

Las plataformas de nivel 3 son arquitecturas en las primeras etapas de desarrollo, para plataformas
de hardware no convencionales, o que se consideran sistemas heredados con pocas probabilidades
de tener un uso amplio en el futuro. El soporte inicial para las plataformas de Nivel 3 puede existir
en un repositorio separado en lugar del repositorio de origen principal.

El Proyecto FreeBSD no ofrece garantias a los consumidores de plataformas de Nivel 3 y no se
compromete a mantener los recursos para apoyar el desarrollo. Es posible que las plataformas de
nivel 3 no siempre sean compilables, ni ningun nucleo o ABI de area de usuario se considera
estable.

21.6. Arquitecturas No Soportadas

Otras plataformas no estan soportadas en absoluto por el proyecto. El proyecto antes las describia
como sistemas de Nivel 4.

Después de que una plataforma pase a ser no soportada, se elimina de los drboles de fuentes, ports
y documentacion todo su soporte. Notese que el soporte en ports debe permanecer mientras la
plataforma esté soportada en una rama todavia soportada por los ports.

21.7. Politica sobre el cambio de nivel de una
arquitectura

Los sistemas solo se pueden mover de un nivel a otro con la aprobacion del Core Team de FreeBSD,
que tomara esa decision en colaboracion con el Oficial de Seguridad, la Ingenieria de Versiones y el
Equipo de Gestion de Ports. Para que una plataforma sea promovida a un nivel superior, las
garantias de soporte que falten deben cumplirse antes de que se complete la promocion.

22. Preguntas frecuentes sobre ports
especificos

75

22.1. Agregar un port nuevo

22.1.1. (COmo agrego un nuevo port?

Afnadir un port al arbol es algo relativamente sencillo. Una vez que el port estd listo para ser
afiadido, como se explica en aqui, necesitas afadir la entrada al directorio de port en el Makefile de
la categoria correspondiente. En este Makefile, los ports estdn listados en orden alfabético y
anadidos a la variable SUBDIR, de este modo:

SUBDIR += newport

Una vez que el port y el Makefile de su categoria estan listos, se puede hacer commit del nuevo
port:

% git add cateqory/Makefile category/newport
% git commit
% git push

No te olvides de establecer los hooks de git para el arbol de ports como se explica
aqui; se ha desarrollado un hook especifico para verificar la categoria del
Makefile.

a

22.1.2. ¢Alguna otra cosa que deba saber cuando agregue un nuevo port?
Verifica el port, preferiblemente para asegurarse de que se compila y empaqueta correctamente.

The Porters Handbook’s Testing Chapter contains more detailed instructions. See the Portclippy /
Portfmt and the poudriere sections.

No necesitas eliminar todos los avisos pero asegurate de haber corregido los mas simples.

Si el port viene de alguien que no ha contribuido anteriormente al Proyecto, afiade el nombre de
esa persona a la seccion Additional Contributors de la Lista de Colaboradores de FreeBSD.

Si el port vino a través de un PR, ciérralo. Para cerrar un PR, cambia el estado a Issue Resolved y la
resolucion a Fixed.

If for some reason using poudriere to test the new port is not possible, the bare
minimum of testing includes this sequence:

make install

make package

make deinstall

pkg add package you built above
make deinstall

make reinstall

= o FF = =

76

https://docs.freebsd.org/en/books/porters-handbook/testing
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-portclippy
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-portclippy
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-poudriere
https://docs.freebsd.org/en/articles/contributors/#contrib-additional
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-poudriere

make package

Date cuenta de que poudriere es la referencia para la construccion de paquetes, si
el paquete no compila en poudriere, sera eliminado.

22.2. Eliminar un port existente

22.2.1. ¢COmo elimino un port existente?

Primero, lea la seccion sobre copias del repositorio. Antes de eliminar el port, debe verificar que no
haya otros ports que dependan de él.
» Asegurese de que no haya dependencia del port en la coleccion de ports:
- E]l PKGNAME del port aparece exactamente en una linea en un archivo INDEX reciente.

- Ningun otro port contiene ninguna referencia al directorio del port o PKGNAME en sus

Makefiles
7 Cuando uses Git, considera utilizar git-grep(1), es mucho mas rapido que
- grep -r.

* Luego, quita el port:

o

Elimina los ficheros del port y el directorio con git rm.

o

Elimina la entrada SUBDIR del port en el Makefile del directorio padre.

- Afhade una entrada en ports/MOVED.

o

Elimina el port de ports/LEGAL si estuviera ahi.

Como alternativa, puedes utilizar el script rmport, de ports/Tools/scripts. Este script fue escrito por
Vasil Dimov <vd@FreeBSD.org>. Cuando envies preguntas acerca de este script a Lista de correo
sobre los ports de FreeBSD, por favor, pon en copia a Chris Rees <crees@FreeBSD.org>, el actual
mantenedor.

22.3. ¢CoOmo muevo un port a un lugar nuevo?

1. Realiza una comprobacion exhaustiva de la coleccion de ports buscando cualquier
dependencia de la localizaciéon/nombre antiguo del port y actualizalos. Ejecutar grep en
INDEX no es suficiente porque algunos ports tienen dependencias activadas a través de
opciones de tiempo de compilacion. Se recomienda hacer un git-grep(1) completo sobre la
coleccion de ports.

2. Elimina la entrada SUBDIR del Makefile de la categoria antigua y afiade una entrada SUBDIR
en el Makefile de la nueva categoria.

3. Anade una entrada en ports/MOVED.

77

https://man.freebsd.org/cgi/man.cgi?query=git-grep&sektion=1&format=html
mailto:vd@FreeBSD.org
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
mailto:crees@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=git-grep&sektion=1&format=html

4. Busca entradas en los ficheros xml de ports/security/vuxml y ajustalos en consecuencia. En
particular, verifica los paquetes anteriores con el nuevo nombre cuya version podria
incluir el nuevo port.

5. Mueve el port con git mv.

6. Haz commit de los cambios.

22.4. ;CoOmo copio un port a un lugar nuevo?

1. Copia el port con cp -R old-cat/old-port new-cat/new-port.
2. Afiade el nuevo port a new-cat/Makefile.
3. Cambia lo que se necesite en new-cat/new-port.

4, Haz commit de los cambios.

22.5. Congelacion de ports

22.5.1. ¢(Qué es una "congelacion de ports"?

Una "Congelacion de ports" era un estado restringido en el que se colocaba el arbol de ports antes
de un lanzamiento de versidon. Se utiliz6 para garantizar una mayor calidad de los paquetes
enviados con una version. Solia durar un par de semanas. Durante ese tiempo, se solucionaban los
problemas de compilacidn y se compilaban los paquetes para dicha version. Esta practica ya no se
utiliza, ya que los paquetes para las versiones se crean a partir de la rama trimestral estable actual.

Para mas informacion sobre cdmo mergear commits en la rama trimestral, lee ;Cudl es el
procedimiento para solicitar autorizacion para fusionar un compromiso con la sucursal trimestral?.

22.6. Sucursales trimestrales
22.6.1. ¢ Cual es el procedimiento para solicitar autorizacion para fusionar
un compromiso con la sucursal trimestral?

Desde el 30 de Noviembre de 2020 no es necesario buscar aprobacién explicita para hacer commit
en la rama trimestral.

22.6.2. ¢Cual es el procedimiento para mergear commits con la rama
trimestral?

Mergear commits a la rama trimestral (un proceso que llamamos MFH por razones histdricas) es

muy similar a hacer un commit MFC en el repositorio de src, asi que basicamente:

% git checkout 2021Q2
git cherry-pick -x $HASH

[
)

78

(verify everything is OK, for example by doing a build test)
% git push

donde $HASH es el hash del commit que quieres copiar a la rama trimestral. El pardmetro -x asegura
que se incluye el hash $HASH de la rama main en el nuevo mensaje de commit de la rama trimestral.

22.7. Crear una nueva categoria

22.7.1. ¢Cual es el procedimiento para crear una nueva categoria?

Por favor, lee Proposing a New Category en el Porter’s Handbook. Una vez que se ha seguido el
procedimiento y que se ha asignado el PR a Grupo de Administracion de ports
<portmgr@FreeBSD.org>, es su decision si se aprueba o no. Silo hacen, es su responsabilidad:

1. Realiza los movimientos necesarios. (Esto solo se aplica a las categorias fisicas.)
2. Actualiza la definicion de VALID_CATEGORIES en ports/Mk/bsd.port.mk.

3. Asignate el PR de nuevo.

22.7.2. ¢{Qué debo hacer para implementar una nueva categoria fisica?

1. Actualizar cada Makefile de los ports movidos. No conectes todavia la nueva categoria a la
compilacion.

Para hacer esto, necesitaras:

1. Cambiar CATEGORIES del port (este era el objetivo del ejercicio, ¢recuerdas?)
Primero se lista la nueva categoria. Esto ayudara a que el PKGORIGIN sea correcto.

2. Ejecutar un make describe. Puesto que el make index de nivel raiz que ejecutaras en
unos pocos pasos es una iteracion de un make describe realizado sobre toda la
jerarquia de ports, detectar cualquier error aqui te evitara tener que volver a
ejecutar ese paso mas adelante.

3. Si quieres ser realmente concienzudo, ahora podria ser un buen momento para
ejecutar portlint(1).

2. Comprueba que los PKGORIGIN son correctos. El sistema de ports utiliza la entrada
CATEGORIES de cada port para crear su PKGORIGIN, el cual se usa para conectar los paquetes
instalados con el directorio de port a partir del cual fue construido. Si esta entrada es
incorrecta, herramientas habituales de los prots como pkg-version(8) y portupgrade(1)
fallaran.

Para hacer esto, utiliza la herramienta chkorigin.sh: env PORTSDIR=/path/to/ports sh -e
/path/to/ports/Tools/scripts/chkorigin.sh. Esto comprobara cada port en el arbol, incluso
aquellos que no estén conectados a la compilacion, de forma que puedes ejecutarlo

79

https://docs.freebsd.org/en/books/porters-handbook/#proposing-categories
mailto:portmgr@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=portlint&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=portupgrade&sektion=1&format=html

directamente después de la operacion de mover el port. Truco: jno te olvides de mirar los
PKGORIGIN de los ports esclavos en los ports que acabas de mover!

3. En tu propio sistema local, comprueba los cambios propuestos: primero, comenta las
entradas SUBDIR en los Makefiles de las categorias de los ports antiguos; luego activa la
construccion de la nueva categoria en ports/Makefile. Ejecuta make checksubdirs en los
directorios de las categorias afectadas para comprobar las entradas SUBDIR. Después en el
directorio ports/ ejecuta make index. Esto puede durar mas de 40 minutos incluso en
sistemas modernos; sin embargo, es un paso necesario para evitar que otra gente tenga
problemas.

4. Una vez hecho esto, puedes hacer commit del ports/Makefile actualizado para conectar la
nueva categoria a la compilacion y también hacer commit de los cambios en el Makefile
para la(s) categoria(s) nueva(s).

5. Afnade las entradas apropiadas a ports/MOVED.
6. Actualiza la documentacidon modificando:
o el list of categories en el Porter’s Handbook

7. Solo una vez que se haya hecho todo lo anterior, y ya no se informe de problemas con los
nuevos ports, los ports antiguos deben eliminarse de sus ubicaciones anteriores en el
repositorio.

22.7.3. ¢Qué debo hacer para implementar una nueva categoria virtual?
Esto es mucho mas simple que una categoria fisica. Solo se necesitan algunas modificaciones:

* el list of categories en el Porter’s Handbook

22.8. Preguntas miscelaneas

22.8.1. ;Hay cambios de los que se pueda hacer commit sin pedir la
aprobacion del mantenedor?

La aprobacion general para la mayoria de los ports se aplica a estos tipos de arreglos:

* La mayoria de los cambios de infraestructura sobre un port (es decir, modernizarlo, pero no
cambiar la funcionalidad). Por ejemplo, el "blanket" cubre convertir ports para que utilicen una
nueva macro USES, habilitar compilacién con mds informacion de log y cambiar a una nueva
sintaxis en el sistema de ports.

* Arreglos triviales y probados en compilacion y tiempo de ejecucion.

» Cambios de documentacion y metadatos en los ports, como pkg-descr o COMMENT.

Cualquier cosa mencionada por Grupo de Administracion de ports

o <portmgr@FreeBSD.org> o el Grupo Responsables de Seguridad <security-
officer@FreeBSD.org> pueden ser excepciones a estas reglas. Nunca se pueden
hacer commits no autorizados en ports mantenidos por esos grupos.

80

https://docs.freebsd.org/en/books/porters-handbook/#PORTING-CATEGORIES
https://docs.freebsd.org/en/books/porters-handbook/#PORTING-CATEGORIES
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:security-officer@FreeBSD.org

22.8.2. ¢{COmMo sé si mi port se esta construyendo correctamente o no?

Los paquetes se construyen varias veces por semana. Si un port falla, el mantenedor recibe un
email de pkg-fallout@FreeBSD.org.

Informes de todos las construcciones de paquetes (oficiales, experimentales y de no-regresion) se
agregan en pkg-status.FreeBSD.org.

22.8.3. He afiadido un nuevo port. (Necesito afiadirlo al INDEX?

No. El fichero se puede generar bien ejecutando make index, o se puede descargar una version pre-
generada con make fetchindex.

22.8.4. ;(Hay otros archivos que no pueda tocar?

Cualquier fichero bajo ports/, o cualquier fichero bajo un subdirectorio que empieza con una letra
mayuscula (MKk/, Tools/, etc.). En concreto, Grupo de Administracion de ports
<portmgr@FreeBSD.org> es muy protector con ports/Mk/bsd.port*mk asi que no hagas commit de
cambios en esos ficheros a menos que quieras enfrentarte a su ira.

22.8.5. ¢Cual es el procedimiento adecuado para actualizar la suma de
comprobacion de un archivo distfile de un pport cuando el archivo cambia
sin un cambio de version?

Cuando la suma de comprobacion (checksum) de un archivo de distribucidn se actualiza debido a
que el autor actualiz6 el archivo sin cambiar la revision del port, el mensaje de confirmacion
incluye un resumen de las diferencias relevantes entre el archivo de distribucion original y el
nuevo para garantizar que el archivo de distribucion no haya sido dafiado o alterado
maliciosamente. Si la version actual del port ha estado en el arbol de ports durante un tiempo, una
copia del antiguo archivo de distribucién estara disponible en los servidores ftp; de lo contrario, se
debe contactar con el autor o el encargado del mantenimiento para averiguar por qué ha cambiado
el archivo de distribucion.

22.8.6. ¢Como se puede solicitar una construccion experimental (exp-run)
del arbol de ports?

Se debe completar una ejecucion de exp-run antes de que se haga commit de parches con un
impacto significativo en los ports. El parche puede ser contra el arbol de ports o el sistema base.

Se hara una construccion completa con los parches proporcionados por el peticionario, y éste es
responsable de corregir los problemas detectados (fallout) antes de hacer commit.

1. Visita la pagina Bugzilla new PR page.
2. Selecciona el producto relacionado con tu parche.
3. Completa el informe de error como de costumbre. Recuerda adjuntar el parche.

4. Si arriba dice “Show Advanced Fields”, haz click en el enlace. Ahora dirda “Hide Advanced
Fields”. Habra disponibles muchos mas campos. Si ya dice “Hide Advanced Fields”, no se

81

pkg-status.FreeBSD.org
mailto:portmgr@FreeBSD.org
https://bugs.freebsd.org/submit

necesita hacer nada.

5. En la seccion “Flags”, establece “exp-run” a 7. Respecto a los otros campos, pasando el raton
por encima de cualquier campo hace que se muestren mas detalles.

6. Envia. Espera a que se ejecute la compilacion.

7. El Grupo de Administracion de ports <portmgr@FreeBSD.org> contestard con los posibles
errores detectados.

8. Dependiendo del resultado:

o Si no hay errores, el procedimiento se detiene aqui y se puede hacer commit del
cambio, pendiente de cualquier otra aprobacion requerida.

1. Si hay errores, deben ser corregidos, bien arreglando los ports directamente en el
arbol de ports, o afiadiéndolo al parche enviado.

ii. Una vez hecho esto, vuelve al paso 6 y di que los errores se han solucionado y
espera a que se vuelva a ejecutar el exp-run. Repite mientras haya ports rotos.

23. Problemas Especificos para
Desarrolladores que No Son Committers

Algunas personas que tienen acceso a las maquinas FreeBSD no tienen commit bits. Casi todo este
documento también aplicard a estos desarrolladores (excepto los aspectos especificos de los
commits y las pertenencias a las listas de correo que las acompafian). En particular, te
recomendamos que leas:

¢ Detalles administrativos

* Para Todos

o Pidele a tu mentor que te afiada al "Additional Contributors”
(doc/shared/contrib-additional.adoc), si todavia no estas en la lista.

e Relaciones con los desarrolladores
* Guia de inicio rapido de SSH

» La gran lista de reglas de los Committers de FreeBSD

24. Informacion sobre Google Analytics

A partir del 12 de diciembre de 2012, se habilito Google Analytics en el sitio web del Proyecto
FreeBSD para recopilar estadisticas de uso anénimas con respecto al uso del sitio.

0 El 3 de Marzo de 2022, Google Analytics fue eliminado del Proyecto FreeBSD.

82

mailto:portmgr@FreeBSD.org

25. Preguntas miscelaneas

25.1. ¢Como accedo a people.FreeBSD.org para incluir
algo de informacion personal o informacion acerca de
un proyecto?

people.FreeBSD.org es lo mismo que freefall.FreeBSD.org. Simplemente crea un directorio
public_html. Cualquier cosa que dejes en ese directorio sera automaticamente visible bajo
https://people.FreeBSD.orgj/.

25.2. ¢ Donde se almacenan los archivos de la lista de
correo?

Las listas de correo se archivan en /local/mail en freefall.FreeBSD.org.

25.3. Me gustaria ser mentor de un nuevo committer.
¢Qué proceso debo seguir?

Lee el documento New Account Creation Procedure en las paginas internas.

26. Beneficios y Ventajas para los
committers de FreeBSD

26.1. Reconocimiento

El reconocimiento como ingeniero de software competente es el valor mas duradero. Ademas, tener
la oportunidad de trabajar con algunas de las mejores personas con las que todo ingeniero sofiaria
conocer jes una gran ventaja!

26.2. Centro comercial FreeBSD

Los committers de FreeBSD pueden obtener gratis en las conferencias un conjunto de 4-CDs o DVD
de FreeBSD Mall, Inc..

26.3. Gandi.net

Gandi proporciona hospedaje web, computacion en la nube, registro de dominios y servicios de
certificados X.509.

Gandi oferta una tarifa E-rate de descuento a todos los desarrolladores de FreeBSD. Para facilitar el
proceso de obtener el descuento, primero crea una cuenta en Gandi, rellena la informacién de

83

https://people.FreeBSD.org/
https://www.freebsd.org/internal/new-account/
http://www.freebsdmall.com
https://gandi.net

facturacion y selecciona la moneda. Después envia un email a non-profit@gandi.net usando tu
direccion @freebsd.org e indica tu identificador de Gandi.

26.4. rsync.net

rsync.net proporciona almacenamiento en la nube para backup que estd optimizado para usuarios
UNIX. Su servicio funciona en su totalidad con FreeBSD y ZFS.

rsync.net oferta una cuenta de 500 GB gratis para siempre para los desarrolladores de FreeBSD.
Simplemente registrate en https://www.rsync.net/freebsd.html usando tu direccidn @freebsd.org
para recibir esta cuenta gratuita.

26.5. JetBrains

JetBrains es una compafiia de desarrollo de software que crea herramientas para desarrolladores
de software y gestores de proyectos. La compariia ofrece varios entornos integrados de desarrollo
(IDEs) para distintos lenguajes de programacion.

JetBrain oferta 100 licencias anuales de forma gratuita para todos sus IDE. Simplemente registrate
en https://account.jetbrains.com/a/322t13z7 usando tu direccion @freebsd.org y la cuenta tendra una
licencia asociada a ella automdticamente. Una vez que la cuenta esté activa usala en cualquiera de
los productos para activarlos y ya has terminado.

Por favor, utiliza estas licencias sélo para uso personal y no las compartas con

o nadie fuera del proyecto FreeBSD, ya que eso seria una violacion de los términos
de donacion.

84

mailto:non-profit@gandi.net
https://rsync.net
https://www.rsync.net/freebsd.html
https://www.jetbrains.com
https://www.jetbrains.com/products
https://account.jetbrains.com/a/322tl3z7

	Guía para los Committers
	Tabla de contenidos
	1. Detalles administrativos
	2. Claves OpenPGP de FreeBSD
	3. Kerberos y contraseña web LDAP para el clúster de FreeBSD
	4. Tipos de Commit Bits
	5. Introducción a Git
	6. Histórico del Control de Versiones
	7. Configuración, Convenciones y Tradiciones
	8. Revisión previa al commit
	9. Mensajes de Commit
	10. Licencia preferida para los nuevos archivos
	11. Seguimiento de las licencias concedidas al proyecto FreeBSD
	12. Etiquetas SPDX en el árbol
	13. Relaciones con los desarrolladores
	14. Si tienes dudas …​
	15. Bugzilla
	16. Phabricator
	17. Quien es Quien
	18. Guía de inicio rápido de SSH
	19. Disponibilidad de Coverity® para los Committers de FreeBSD
	20. La gran lista de reglas de los Committers de FreeBSD
	21. Soporte para múltiples arquitecturas
	22. Preguntas frecuentes sobre ports específicos
	23. Problemas Específicos para Desarrolladores que No Son Committers
	24. Información sobre Google Analytics
	25. Preguntas misceláneas
	26. Beneficios y Ventajas para los committers de FreeBSD

